// package decision implements the decision engine for the bitswap service. package decision import ( "sync" "time" blocks "github.com/ipfs/go-ipfs/blocks" bstore "github.com/ipfs/go-ipfs/blocks/blockstore" bsmsg "github.com/ipfs/go-ipfs/exchange/bitswap/message" wl "github.com/ipfs/go-ipfs/exchange/bitswap/wantlist" logging "gx/ipfs/QmNQynaz7qfriSUJkiEZUrm2Wen1u3Kj9goZzWtrPyu7XR/go-log" peer "gx/ipfs/QmRBqJF7hb8ZSpRcMwUt8hNhydWcxGEhtk81HKq6oUwKvs/go-libp2p-peer" context "gx/ipfs/QmZy2y8t9zQH2a1b8q2ZSLKp17ATuJoCNxxyMFG5qFExpt/go-net/context" ) // TODO consider taking responsibility for other types of requests. For // example, there could be a |cancelQueue| for all of the cancellation // messages that need to go out. There could also be a |wantlistQueue| for // the local peer's wantlists. Alternatively, these could all be bundled // into a single, intelligent global queue that efficiently // batches/combines and takes all of these into consideration. // // Right now, messages go onto the network for four reasons: // 1. an initial `sendwantlist` message to a provider of the first key in a // request // 2. a periodic full sweep of `sendwantlist` messages to all providers // 3. upon receipt of blocks, a `cancel` message to all peers // 4. draining the priority queue of `blockrequests` from peers // // Presently, only `blockrequests` are handled by the decision engine. // However, there is an opportunity to give it more responsibility! If the // decision engine is given responsibility for all of the others, it can // intelligently decide how to combine requests efficiently. // // Some examples of what would be possible: // // * when sending out the wantlists, include `cancel` requests // * when handling `blockrequests`, include `sendwantlist` and `cancel` as // appropriate // * when handling `cancel`, if we recently received a wanted block from a // peer, include a partial wantlist that contains a few other high priority // blocks // // In a sense, if we treat the decision engine as a black box, it could do // whatever it sees fit to produce desired outcomes (get wanted keys // quickly, maintain good relationships with peers, etc). var log = logging.Logger("engine") const ( // outboxChanBuffer must be 0 to prevent stale messages from being sent outboxChanBuffer = 0 ) // Envelope contains a message for a Peer type Envelope struct { // Peer is the intended recipient Peer peer.ID // Block is the payload Block blocks.Block // A callback to notify the decision queue that the task is complete Sent func() } type Engine struct { // peerRequestQueue is a priority queue of requests received from peers. // Requests are popped from the queue, packaged up, and placed in the // outbox. peerRequestQueue *prq // FIXME it's a bit odd for the client and the worker to both share memory // (both modify the peerRequestQueue) and also to communicate over the // workSignal channel. consider sending requests over the channel and // allowing the worker to have exclusive access to the peerRequestQueue. In // that case, no lock would be required. workSignal chan struct{} // outbox contains outgoing messages to peers. This is owned by the // taskWorker goroutine outbox chan (<-chan *Envelope) bs bstore.Blockstore lock sync.Mutex // protects the fields immediatly below // ledgerMap lists Ledgers by their Partner key. ledgerMap map[peer.ID]*ledger ticker *time.Ticker } func NewEngine(ctx context.Context, bs bstore.Blockstore) *Engine { e := &Engine{ ledgerMap: make(map[peer.ID]*ledger), bs: bs, peerRequestQueue: newPRQ(), outbox: make(chan (<-chan *Envelope), outboxChanBuffer), workSignal: make(chan struct{}, 1), ticker: time.NewTicker(time.Millisecond * 100), } go e.taskWorker(ctx) return e } func (e *Engine) WantlistForPeer(p peer.ID) (out []wl.Entry) { e.lock.Lock() partner, ok := e.ledgerMap[p] if ok { out = partner.wantList.SortedEntries() } e.lock.Unlock() return out } func (e *Engine) LedgerForPeer(p peer.ID) *Receipt { ledger := e.findOrCreate(p) ledger.lk.Lock() defer ledger.lk.Unlock() return &Receipt{ Peer: ledger.Partner.String(), Value: ledger.Accounting.Value(), Sent: ledger.Accounting.BytesSent, Recv: ledger.Accounting.BytesRecv, Exchanged: ledger.ExchangeCount(), } } func (e *Engine) taskWorker(ctx context.Context) { defer close(e.outbox) // because taskWorker uses the channel exclusively for { oneTimeUse := make(chan *Envelope, 1) // buffer to prevent blocking select { case <-ctx.Done(): return case e.outbox <- oneTimeUse: } // receiver is ready for an outoing envelope. let's prepare one. first, // we must acquire a task from the PQ... envelope, err := e.nextEnvelope(ctx) if err != nil { close(oneTimeUse) return // ctx cancelled } oneTimeUse <- envelope // buffered. won't block close(oneTimeUse) } } // nextEnvelope runs in the taskWorker goroutine. Returns an error if the // context is cancelled before the next Envelope can be created. func (e *Engine) nextEnvelope(ctx context.Context) (*Envelope, error) { for { nextTask := e.peerRequestQueue.Pop() for nextTask == nil { select { case <-ctx.Done(): return nil, ctx.Err() case <-e.workSignal: nextTask = e.peerRequestQueue.Pop() case <-e.ticker.C: e.peerRequestQueue.thawRound() nextTask = e.peerRequestQueue.Pop() } } // with a task in hand, we're ready to prepare the envelope... block, err := e.bs.Get(nextTask.Entry.Key) if err != nil { // If we don't have the block, don't hold that against the peer // make sure to update that the task has been 'completed' nextTask.Done() continue } return &Envelope{ Peer: nextTask.Target, Block: block, Sent: func() { nextTask.Done() select { case e.workSignal <- struct{}{}: // work completing may mean that our queue will provide new // work to be done. default: } }, }, nil } } // Outbox returns a channel of one-time use Envelope channels. func (e *Engine) Outbox() <-chan (<-chan *Envelope) { return e.outbox } // Returns a slice of Peers with whom the local node has active sessions func (e *Engine) Peers() []peer.ID { e.lock.Lock() defer e.lock.Unlock() response := make([]peer.ID, 0) for _, ledger := range e.ledgerMap { response = append(response, ledger.Partner) } return response } // MessageReceived performs book-keeping. Returns error if passed invalid // arguments. func (e *Engine) MessageReceived(p peer.ID, m bsmsg.BitSwapMessage) error { if len(m.Wantlist()) == 0 && len(m.Blocks()) == 0 { log.Debugf("received empty message from %s", p) } newWorkExists := false defer func() { if newWorkExists { e.signalNewWork() } }() l := e.findOrCreate(p) l.lk.Lock() defer l.lk.Unlock() if m.Full() { l.wantList = wl.New() } for _, entry := range m.Wantlist() { if entry.Cancel { log.Debugf("cancel %s", entry.Key) l.CancelWant(entry.Key) e.peerRequestQueue.Remove(entry.Key, p) } else { log.Debugf("wants %s - %d", entry.Key, entry.Priority) l.Wants(entry.Key, entry.Priority) if exists, err := e.bs.Has(entry.Key); err == nil && exists { e.peerRequestQueue.Push(entry.Entry, p) newWorkExists = true } } } for _, block := range m.Blocks() { log.Debugf("got block %s %d bytes", block.Key(), len(block.Data())) l.ReceivedBytes(len(block.Data())) } return nil } func (e *Engine) addBlock(block blocks.Block) { work := false for _, l := range e.ledgerMap { l.lk.Lock() if entry, ok := l.WantListContains(block.Key()); ok { e.peerRequestQueue.Push(entry, l.Partner) work = true } l.lk.Unlock() } if work { e.signalNewWork() } } func (e *Engine) AddBlock(block blocks.Block) { e.lock.Lock() defer e.lock.Unlock() e.addBlock(block) } // TODO add contents of m.WantList() to my local wantlist? NB: could introduce // race conditions where I send a message, but MessageSent gets handled after // MessageReceived. The information in the local wantlist could become // inconsistent. Would need to ensure that Sends and acknowledgement of the // send happen atomically func (e *Engine) MessageSent(p peer.ID, m bsmsg.BitSwapMessage) error { l := e.findOrCreate(p) for _, block := range m.Blocks() { l.SentBytes(len(block.Data())) l.wantList.Remove(block.Key()) e.peerRequestQueue.Remove(block.Key(), p) } return nil } func (e *Engine) PeerDisconnected(p peer.ID) { // TODO: release ledger } func (e *Engine) numBytesSentTo(p peer.ID) uint64 { // NB not threadsafe return e.findOrCreate(p).Accounting.BytesSent } func (e *Engine) numBytesReceivedFrom(p peer.ID) uint64 { // NB not threadsafe return e.findOrCreate(p).Accounting.BytesRecv } // ledger lazily instantiates a ledger func (e *Engine) findOrCreate(p peer.ID) *ledger { e.lock.Lock() l, ok := e.ledgerMap[p] if !ok { l = newLedger(p) e.ledgerMap[p] = l } e.lock.Unlock() return l } func (e *Engine) signalNewWork() { // Signal task generation to restart (if stopped!) select { case e.workSignal <- struct{}{}: default: } }