package query import ( "time" goprocess "github.com/jbenet/goprocess" ) /* Query represents storage for any key-value pair. tl;dr: queries are supported across datastores. Cheap on top of relational dbs, and expensive otherwise. Pick the right tool for the job! In addition to the key-value store get and set semantics, datastore provides an interface to retrieve multiple records at a time through the use of queries. The datastore Query model gleans a common set of operations performed when querying. To avoid pasting here years of database research, let’s summarize the operations datastore supports. Query Operations: * namespace - scope the query, usually by object type * filters - select a subset of values by applying constraints * orders - sort the results by applying sort conditions * limit - impose a numeric limit on the number of results * offset - skip a number of results (for efficient pagination) datastore combines these operations into a simple Query class that allows applications to define their constraints in a simple, generic, way without introducing datastore specific calls, languages, etc. Of course, different datastores provide relational query support across a wide spectrum, from full support in traditional databases to none at all in most key-value stores. Datastore aims to provide a common, simple interface for the sake of application evolution over time and keeping large code bases free of tool-specific code. It would be ridiculous to claim to support high- performance queries on architectures that obviously do not. Instead, datastore provides the interface, ideally translating queries to their native form (e.g. into SQL for MySQL). However, on the wrong datastore, queries can potentially incur the high cost of performing the aforemantioned query operations on the data set directly in Go. It is the client’s responsibility to select the right tool for the job: pick a data storage solution that fits the application’s needs now, and wrap it with a datastore implementation. As the needs change, swap out datastore implementations to support your new use cases. Some applications, particularly in early development stages, can afford to incurr the cost of queries on non- relational databases (e.g. using a FSDatastore and not worry about a database at all). When it comes time to switch the tool for performance, updating the application code can be as simple as swapping the datastore in one place, not all over the application code base. This gain in engineering time, both at initial development and during later iterations, can significantly offset the cost of the layer of abstraction. */ type Query struct { Prefix string // namespaces the query to results whose keys have Prefix Filters []Filter // filter results. apply sequentially Orders []Order // order results. apply hierarchically Limit int // maximum number of results Offset int // skip given number of results KeysOnly bool // return only keys. ReturnExpirations bool // return expirations (see TTLDatastore) } // Entry is a query result entry. type Entry struct { Key string // cant be ds.Key because circular imports ...!!! Value []byte // Will be nil if KeysOnly has been passed. Expiration time.Time // Entry expiration timestamp if requested and supported (see TTLDatastore). } // Result is a special entry that includes an error, so that the client // may be warned about internal errors. type Result struct { Entry Error error } // Results is a set of Query results. This is the interface for clients. // Example: // // qr, _ := myds.Query(q) // for r := range qr.Next() { // if r.Error != nil { // // handle. // break // } // // fmt.Println(r.Entry.Key, r.Entry.Value) // } // // or, wait on all results at once: // // qr, _ := myds.Query(q) // es, _ := qr.Rest() // for _, e := range es { // fmt.Println(e.Key, e.Value) // } // type Results interface { Query() Query // the query these Results correspond to Next() <-chan Result // returns a channel to wait for the next result NextSync() (Result, bool) // blocks and waits to return the next result, second paramter returns false when results are exhausted Rest() ([]Entry, error) // waits till processing finishes, returns all entries at once. Close() error // client may call Close to signal early exit // Process returns a goprocess.Process associated with these results. // most users will not need this function (Close is all they want), // but it's here in case you want to connect the results to other // goprocess-friendly things. Process() goprocess.Process } // results implements Results type results struct { query Query proc goprocess.Process res <-chan Result } func (r *results) Next() <-chan Result { return r.res } func (r *results) NextSync() (Result, bool) { val, ok := <-r.res return val, ok } func (r *results) Rest() ([]Entry, error) { var es []Entry for e := range r.res { if e.Error != nil { return es, e.Error } es = append(es, e.Entry) } <-r.proc.Closed() // wait till the processing finishes. return es, nil } func (r *results) Process() goprocess.Process { return r.proc } func (r *results) Close() error { return r.proc.Close() } func (r *results) Query() Query { return r.query } // ResultBuilder is what implementors use to construct results // Implementors of datastores and their clients must respect the // Process of the Request: // // * clients must call r.Process().Close() on an early exit, so // implementations can reclaim resources. // * if the Entries are read to completion (channel closed), Process // should be closed automatically. // * datastores must respect <-Process.Closing(), which intermediates // an early close signal from the client. // type ResultBuilder struct { Query Query Process goprocess.Process Output chan Result } // Results returns a Results to to this builder. func (rb *ResultBuilder) Results() Results { return &results{ query: rb.Query, proc: rb.Process, res: rb.Output, } } const NormalBufSize = 1 const KeysOnlyBufSize = 128 func NewResultBuilder(q Query) *ResultBuilder { bufSize := NormalBufSize if q.KeysOnly { bufSize = KeysOnlyBufSize } b := &ResultBuilder{ Query: q, Output: make(chan Result, bufSize), } b.Process = goprocess.WithTeardown(func() error { close(b.Output) return nil }) return b } // ResultsWithChan returns a Results object from a channel // of Result entries. Respects its own Close() func ResultsWithChan(q Query, res <-chan Result) Results { b := NewResultBuilder(q) // go consume all the entries and add them to the results. b.Process.Go(func(worker goprocess.Process) { for { select { case <-worker.Closing(): // client told us to close early return case e, more := <-res: if !more { return } select { case b.Output <- e: case <-worker.Closing(): // client told us to close early return } } } }) go b.Process.CloseAfterChildren() return b.Results() } // ResultsWithEntries returns a Results object from a list of entries func ResultsWithEntries(q Query, res []Entry) Results { b := NewResultBuilder(q) // go consume all the entries and add them to the results. b.Process.Go(func(worker goprocess.Process) { for _, e := range res { select { case b.Output <- Result{Entry: e}: case <-worker.Closing(): // client told us to close early return } } return }) go b.Process.CloseAfterChildren() return b.Results() } func ResultsReplaceQuery(r Results, q Query) Results { switch r := r.(type) { case *results: // note: not using field names to make sure all fields are copied return &results{q, r.proc, r.res} case *resultsIter: // note: not using field names to make sure all fields are copied lr := r.legacyResults if lr != nil { lr = &results{q, lr.proc, lr.res} } return &resultsIter{q, r.next, r.close, lr} default: panic("unknown results type") } } // // ResultFromIterator provides an alternative way to to construct // results without the use of channels. // func ResultsFromIterator(q Query, iter Iterator) Results { if iter.Close == nil { iter.Close = noopClose } return &resultsIter{ query: q, next: iter.Next, close: iter.Close, } } func noopClose() error { return nil } type Iterator struct { Next func() (Result, bool) Close func() error // note: might be called more than once } type resultsIter struct { query Query next func() (Result, bool) close func() error legacyResults *results } func (r *resultsIter) Next() <-chan Result { r.useLegacyResults() return r.legacyResults.Next() } func (r *resultsIter) NextSync() (Result, bool) { if r.legacyResults != nil { return r.legacyResults.NextSync() } else { res, ok := r.next() if !ok { r.close() } return res, ok } } func (r *resultsIter) Rest() ([]Entry, error) { var es []Entry for { e, ok := r.NextSync() if !ok { break } if e.Error != nil { return es, e.Error } es = append(es, e.Entry) } return es, nil } func (r *resultsIter) Process() goprocess.Process { r.useLegacyResults() return r.legacyResults.Process() } func (r *resultsIter) Close() error { if r.legacyResults != nil { return r.legacyResults.Close() } else { return r.close() } } func (r *resultsIter) Query() Query { return r.query } func (r *resultsIter) useLegacyResults() { if r.legacyResults != nil { return } b := NewResultBuilder(r.query) // go consume all the entries and add them to the results. b.Process.Go(func(worker goprocess.Process) { defer r.close() for { e, ok := r.next() if !ok { break } select { case b.Output <- e: case <-worker.Closing(): // client told us to close early return } } return }) go b.Process.CloseAfterChildren() r.legacyResults = b.Results().(*results) }