package decision import ( "sync" context "github.com/jbenet/go-ipfs/Godeps/_workspace/src/code.google.com/p/go.net/context" bstore "github.com/jbenet/go-ipfs/blocks/blockstore" bsmsg "github.com/jbenet/go-ipfs/exchange/bitswap/message" wl "github.com/jbenet/go-ipfs/exchange/bitswap/wantlist" peer "github.com/jbenet/go-ipfs/peer" u "github.com/jbenet/go-ipfs/util" ) var log = u.Logger("engine") // Envelope contains a message for a Peer type Envelope struct { // Peer is the intended recipient Peer peer.Peer // Message is the payload Message bsmsg.BitSwapMessage } type Engine struct { // FIXME taskqueue isn't threadsafe nor is it protected by a mutex. consider // a way to avoid sharing the taskqueue between the worker and the receiver taskqueue *taskQueue workSignal chan struct{} outbox chan Envelope bs bstore.Blockstore lock sync.RWMutex // ledgerMap lists Ledgers by their Partner key. ledgerMap map[u.Key]*ledger } func NewEngine(ctx context.Context, bs bstore.Blockstore) *Engine { e := &Engine{ ledgerMap: make(map[u.Key]*ledger), bs: bs, taskqueue: newTaskQueue(), outbox: make(chan Envelope, 4), // TODO extract constant workSignal: make(chan struct{}), } go e.taskWorker(ctx) return e } func (e *Engine) taskWorker(ctx context.Context) { for { nextTask := e.taskqueue.Pop() if nextTask == nil { // No tasks in the list? // Wait until there are! select { case <-ctx.Done(): return case <-e.workSignal: } continue } block, err := e.bs.Get(nextTask.Entry.Key) if err != nil { continue // TODO maybe return an error } // construct message here so we can make decisions about any additional // information we may want to include at this time. m := bsmsg.New() m.AddBlock(block) // TODO: maybe add keys from our wantlist? select { case <-ctx.Done(): return case e.outbox <- Envelope{Peer: nextTask.Target, Message: m}: } } } func (e *Engine) Outbox() <-chan Envelope { return e.outbox } // Returns a slice of Peers with whom the local node has active sessions func (e *Engine) Peers() []peer.Peer { e.lock.RLock() defer e.lock.RUnlock() response := make([]peer.Peer, 0) for _, ledger := range e.ledgerMap { response = append(response, ledger.Partner) } return response } // BlockIsWantedByPeer returns true if peer wants the block given by this // key func (e *Engine) BlockIsWantedByPeer(k u.Key, p peer.Peer) bool { e.lock.RLock() defer e.lock.RUnlock() ledger := e.findOrCreate(p) return ledger.WantListContains(k) } // MessageReceived performs book-keeping. Returns error if passed invalid // arguments. func (e *Engine) MessageReceived(p peer.Peer, m bsmsg.BitSwapMessage) error { newWorkExists := false defer func() { if newWorkExists { // Signal task generation to restart (if stopped!) select { case e.workSignal <- struct{}{}: default: } } }() e.lock.Lock() defer e.lock.Unlock() l := e.findOrCreate(p) if m.Full() { l.wantList = wl.New() } for _, entry := range m.Wantlist() { if entry.Cancel { l.CancelWant(entry.Key) e.taskqueue.Remove(entry.Key, p) } else { l.Wants(entry.Key, entry.Priority) newWorkExists = true e.taskqueue.Push(entry.Key, entry.Priority, p) } } for _, block := range m.Blocks() { // FIXME extract blocks.NumBytes(block) or block.NumBytes() method l.ReceivedBytes(len(block.Data)) for _, l := range e.ledgerMap { if l.WantListContains(block.Key()) { newWorkExists = true e.taskqueue.Push(block.Key(), 1, l.Partner) } } } return nil } // TODO add contents of m.WantList() to my local wantlist? NB: could introduce // race conditions where I send a message, but MessageSent gets handled after // MessageReceived. The information in the local wantlist could become // inconsistent. Would need to ensure that Sends and acknowledgement of the // send happen atomically func (e *Engine) MessageSent(p peer.Peer, m bsmsg.BitSwapMessage) error { e.lock.Lock() defer e.lock.Unlock() l := e.findOrCreate(p) for _, block := range m.Blocks() { l.SentBytes(len(block.Data)) l.wantList.Remove(block.Key()) e.taskqueue.Remove(block.Key(), p) } return nil } func (e *Engine) NumBytesSentTo(p peer.Peer) uint64 { e.lock.RLock() defer e.lock.RUnlock() return e.findOrCreate(p).Accounting.BytesSent } func (e *Engine) NumBytesReceivedFrom(p peer.Peer) uint64 { e.lock.RLock() defer e.lock.RUnlock() return e.findOrCreate(p).Accounting.BytesRecv } // ledger lazily instantiates a ledger func (e *Engine) findOrCreate(p peer.Peer) *ledger { l, ok := e.ledgerMap[p.Key()] if !ok { l = newLedger(p) e.ledgerMap[p.Key()] = l } return l }