package decision import ( "sync" "time" key "github.com/ipfs/go-ipfs/blocks/key" wantlist "github.com/ipfs/go-ipfs/exchange/bitswap/wantlist" pq "github.com/ipfs/go-ipfs/thirdparty/pq" peer "gx/ipfs/QmRBqJF7hb8ZSpRcMwUt8hNhydWcxGEhtk81HKq6oUwKvs/go-libp2p-peer" ) type peerRequestQueue interface { // Pop returns the next peerRequestTask. Returns nil if the peerRequestQueue is empty. Pop() *peerRequestTask Push(entry *wantlist.Entry, to peer.ID) Remove(k key.Key, p peer.ID) // NB: cannot expose simply expose taskQueue.Len because trashed elements // may exist. These trashed elements should not contribute to the count. } func newPRQ() *prq { return &prq{ taskMap: make(map[string]*peerRequestTask), partners: make(map[peer.ID]*activePartner), frozen: make(map[peer.ID]*activePartner), pQueue: pq.New(partnerCompare), } } // verify interface implementation var _ peerRequestQueue = &prq{} // TODO: at some point, the strategy needs to plug in here // to help decide how to sort tasks (on add) and how to select // tasks (on getnext). For now, we are assuming a dumb/nice strategy. type prq struct { lock sync.Mutex pQueue pq.PQ taskMap map[string]*peerRequestTask partners map[peer.ID]*activePartner frozen map[peer.ID]*activePartner } // Push currently adds a new peerRequestTask to the end of the list func (tl *prq) Push(entry *wantlist.Entry, to peer.ID) { tl.lock.Lock() defer tl.lock.Unlock() partner, ok := tl.partners[to] if !ok { partner = newActivePartner() tl.pQueue.Push(partner) tl.partners[to] = partner } partner.activelk.Lock() defer partner.activelk.Unlock() _, ok = partner.activeBlocks[entry.Key] if ok { return } if task, ok := tl.taskMap[taskKey(to, entry.Key)]; ok { task.Entry.Priority = entry.Priority partner.taskQueue.Update(task.index) return } task := &peerRequestTask{ Entry: entry, Target: to, created: time.Now(), Done: func() { tl.lock.Lock() partner.TaskDone(entry.Key) tl.pQueue.Update(partner.Index()) tl.lock.Unlock() }, } partner.taskQueue.Push(task) tl.taskMap[task.Key()] = task partner.requests++ tl.pQueue.Update(partner.Index()) } // Pop 'pops' the next task to be performed. Returns nil if no task exists. func (tl *prq) Pop() *peerRequestTask { tl.lock.Lock() defer tl.lock.Unlock() if tl.pQueue.Len() == 0 { return nil } partner := tl.pQueue.Pop().(*activePartner) var out *peerRequestTask for partner.taskQueue.Len() > 0 && partner.freezeVal == 0 { out = partner.taskQueue.Pop().(*peerRequestTask) delete(tl.taskMap, out.Key()) if out.trash { out = nil continue // discarding tasks that have been removed } partner.StartTask(out.Entry.Key) partner.requests-- break // and return |out| } tl.pQueue.Push(partner) return out } // Remove removes a task from the queue func (tl *prq) Remove(k key.Key, p peer.ID) { tl.lock.Lock() t, ok := tl.taskMap[taskKey(p, k)] if ok { // remove the task "lazily" // simply mark it as trash, so it'll be dropped when popped off the // queue. t.trash = true // having canceled a block, we now account for that in the given partner partner := tl.partners[p] partner.requests-- // we now also 'freeze' that partner. If they sent us a cancel for a // block we were about to send them, we should wait a short period of time // to make sure we receive any other in-flight cancels before sending // them a block they already potentially have if partner.freezeVal == 0 { tl.frozen[p] = partner } partner.freezeVal++ tl.pQueue.Update(partner.index) } tl.lock.Unlock() } func (tl *prq) fullThaw() { tl.lock.Lock() defer tl.lock.Unlock() for id, partner := range tl.frozen { partner.freezeVal = 0 delete(tl.frozen, id) tl.pQueue.Update(partner.index) } } func (tl *prq) thawRound() { tl.lock.Lock() defer tl.lock.Unlock() for id, partner := range tl.frozen { partner.freezeVal -= (partner.freezeVal + 1) / 2 if partner.freezeVal <= 0 { delete(tl.frozen, id) } tl.pQueue.Update(partner.index) } } type peerRequestTask struct { Entry *wantlist.Entry Target peer.ID // A callback to signal that this task has been completed Done func() // trash in a book-keeping field trash bool // created marks the time that the task was added to the queue created time.Time index int // book-keeping field used by the pq container } // Key uniquely identifies a task. func (t *peerRequestTask) Key() string { return taskKey(t.Target, t.Entry.Key) } // Index implements pq.Elem func (t *peerRequestTask) Index() int { return t.index } // SetIndex implements pq.Elem func (t *peerRequestTask) SetIndex(i int) { t.index = i } // taskKey returns a key that uniquely identifies a task. func taskKey(p peer.ID, k key.Key) string { return string(p) + string(k) } // FIFO is a basic task comparator that returns tasks in the order created. var FIFO = func(a, b *peerRequestTask) bool { return a.created.Before(b.created) } // V1 respects the target peer's wantlist priority. For tasks involving // different peers, the oldest task is prioritized. var V1 = func(a, b *peerRequestTask) bool { if a.Target == b.Target { return a.Entry.Priority > b.Entry.Priority } return FIFO(a, b) } func wrapCmp(f func(a, b *peerRequestTask) bool) func(a, b pq.Elem) bool { return func(a, b pq.Elem) bool { return f(a.(*peerRequestTask), b.(*peerRequestTask)) } } type activePartner struct { // Active is the number of blocks this peer is currently being sent // active must be locked around as it will be updated externally activelk sync.Mutex active int activeBlocks map[key.Key]struct{} // requests is the number of blocks this peer is currently requesting // request need not be locked around as it will only be modified under // the peerRequestQueue's locks requests int // for the PQ interface index int freezeVal int // priority queue of tasks belonging to this peer taskQueue pq.PQ } func newActivePartner() *activePartner { return &activePartner{ taskQueue: pq.New(wrapCmp(V1)), activeBlocks: make(map[key.Key]struct{}), } } // partnerCompare implements pq.ElemComparator // returns true if peer 'a' has higher priority than peer 'b' func partnerCompare(a, b pq.Elem) bool { pa := a.(*activePartner) pb := b.(*activePartner) // having no blocks in their wantlist means lowest priority // having both of these checks ensures stability of the sort if pa.requests == 0 { return false } if pb.requests == 0 { return true } if pa.freezeVal > pb.freezeVal { return false } if pa.freezeVal < pb.freezeVal { return true } if pa.active == pb.active { // sorting by taskQueue.Len() aids in cleaning out trash entries faster // if we sorted instead by requests, one peer could potentially build up // a huge number of cancelled entries in the queue resulting in a memory leak return pa.taskQueue.Len() > pb.taskQueue.Len() } return pa.active < pb.active } // StartTask signals that a task was started for this partner func (p *activePartner) StartTask(k key.Key) { p.activelk.Lock() p.activeBlocks[k] = struct{}{} p.active++ p.activelk.Unlock() } // TaskDone signals that a task was completed for this partner func (p *activePartner) TaskDone(k key.Key) { p.activelk.Lock() delete(p.activeBlocks, k) p.active-- if p.active < 0 { panic("more tasks finished than started!") } p.activelk.Unlock() } // Index implements pq.Elem func (p *activePartner) Index() int { return p.index } // SetIndex implements pq.Elem func (p *activePartner) SetIndex(i int) { p.index = i }