package decision import ( "sync" context "github.com/jbenet/go-ipfs/Godeps/_workspace/src/code.google.com/p/go.net/context" bstore "github.com/jbenet/go-ipfs/blocks/blockstore" bsmsg "github.com/jbenet/go-ipfs/exchange/bitswap/message" wl "github.com/jbenet/go-ipfs/exchange/bitswap/wantlist" peer "github.com/jbenet/go-ipfs/peer" u "github.com/jbenet/go-ipfs/util" ) // TODO consider taking responsibility for other types of requests. For // example, there could be a |cancelQueue| for all of the cancellation // messages that need to go out. There could also be a |wantlistQueue| for // the local peer's wantlists. Alternatively, these could all be bundled // into a single, intelligent global queue that efficiently // batches/combines and takes all of these into consideration. // // Right now, messages go onto the network for four reasons: // 1. an initial `sendwantlist` message to a provider of the first key in a request // 2. a periodic full sweep of `sendwantlist` messages to all providers // 3. upon receipt of blocks, a `cancel` message to all peers // 4. draining the priority queue of `blockrequests` from peers // // Presently, only `blockrequests` are handled by the decision engine. // However, there is an opportunity to give it more responsibility! If the // decision engine is given responsibility for all of the others, it can // intelligently decide how to combine requests efficiently. // // Some examples of what would be possible: // // * when sending out the wantlists, include `cancel` requests // * when handling `blockrequests`, include `sendwantlist` and `cancel` as appropriate // * when handling `cancel`, if we recently received a wanted block from a // peer, include a partial wantlist that contains a few other high priority // blocks // // In a sense, if we treat the decision engine as a black box, it could do // whatever it sees fit to produce desired outcomes (get wanted keys // quickly, maintain good relationships with peers, etc). var log = u.Logger("engine") const ( sizeOutboxChan = 4 ) // Envelope contains a message for a Peer type Envelope struct { // Peer is the intended recipient Peer peer.ID // Message is the payload Message bsmsg.BitSwapMessage } type Engine struct { // peerRequestQueue is a priority queue of requests received from peers. // Requests are popped from the queue, packaged up, and placed in the // outbox. peerRequestQueue *taskQueue // FIXME it's a bit odd for the client and the worker to both share memory // (both modify the peerRequestQueue) and also to communicate over the // workSignal channel. consider sending requests over the channel and // allowing the worker to have exclusive access to the peerRequestQueue. In // that case, no lock would be required. workSignal chan struct{} // outbox contains outgoing messages to peers outbox chan Envelope bs bstore.Blockstore lock sync.RWMutex // protects the fields immediatly below // ledgerMap lists Ledgers by their Partner key. ledgerMap map[peer.ID]*ledger } func NewEngine(ctx context.Context, bs bstore.Blockstore) *Engine { e := &Engine{ ledgerMap: make(map[peer.ID]*ledger), bs: bs, peerRequestQueue: newTaskQueue(), outbox: make(chan Envelope, sizeOutboxChan), workSignal: make(chan struct{}), } go e.taskWorker(ctx) return e } func (e *Engine) taskWorker(ctx context.Context) { for { nextTask := e.peerRequestQueue.Pop() if nextTask == nil { // No tasks in the list? // Wait until there are! select { case <-ctx.Done(): return case <-e.workSignal: } continue } block, err := e.bs.Get(nextTask.Entry.Key) if err != nil { log.Warning("engine: task exists to send block, but block is not in blockstore") continue } // construct message here so we can make decisions about any additional // information we may want to include at this time. m := bsmsg.New() m.AddBlock(block) // TODO: maybe add keys from our wantlist? select { case <-ctx.Done(): return case e.outbox <- Envelope{Peer: nextTask.Target, Message: m}: } } } func (e *Engine) Outbox() <-chan Envelope { return e.outbox } // Returns a slice of Peers with whom the local node has active sessions func (e *Engine) Peers() []peer.ID { e.lock.RLock() defer e.lock.RUnlock() response := make([]peer.ID, 0) for _, ledger := range e.ledgerMap { response = append(response, ledger.Partner) } return response } // MessageReceived performs book-keeping. Returns error if passed invalid // arguments. func (e *Engine) MessageReceived(p peer.ID, m bsmsg.BitSwapMessage) error { newWorkExists := false defer func() { if newWorkExists { // Signal task generation to restart (if stopped!) select { case e.workSignal <- struct{}{}: default: } } }() e.lock.Lock() defer e.lock.Unlock() l := e.findOrCreate(p) if m.Full() { l.wantList = wl.New() } for _, entry := range m.Wantlist() { if entry.Cancel { l.CancelWant(entry.Key) e.peerRequestQueue.Remove(entry.Key, p) } else { l.Wants(entry.Key, entry.Priority) if exists, err := e.bs.Has(entry.Key); err == nil && exists { newWorkExists = true e.peerRequestQueue.Push(entry.Entry, p) } } } for _, block := range m.Blocks() { // FIXME extract blocks.NumBytes(block) or block.NumBytes() method l.ReceivedBytes(len(block.Data)) for _, l := range e.ledgerMap { if l.WantListContains(block.Key()) { newWorkExists = true e.peerRequestQueue.Push(wl.Entry{block.Key(), 1}, l.Partner) } } } return nil } // TODO add contents of m.WantList() to my local wantlist? NB: could introduce // race conditions where I send a message, but MessageSent gets handled after // MessageReceived. The information in the local wantlist could become // inconsistent. Would need to ensure that Sends and acknowledgement of the // send happen atomically func (e *Engine) MessageSent(p peer.ID, m bsmsg.BitSwapMessage) error { e.lock.Lock() defer e.lock.Unlock() l := e.findOrCreate(p) for _, block := range m.Blocks() { l.SentBytes(len(block.Data)) l.wantList.Remove(block.Key()) e.peerRequestQueue.Remove(block.Key(), p) } return nil } func (e *Engine) numBytesSentTo(p peer.ID) uint64 { // NB not threadsafe return e.findOrCreate(p).Accounting.BytesSent } func (e *Engine) numBytesReceivedFrom(p peer.ID) uint64 { // NB not threadsafe return e.findOrCreate(p).Accounting.BytesRecv } // ledger lazily instantiates a ledger func (e *Engine) findOrCreate(p peer.ID) *ledger { l, ok := e.ledgerMap[p] if !ok { l = newLedger(p) e.ledgerMap[p] = l } return l }