Commit 142cad54 authored by tavit ohanian's avatar tavit ohanian

Merge remote-tracking branch 'upstream/master' into reference

parents 1eab59c6 e530276a
Pipeline #38 failed with stages
in 0 seconds
blank_issues_enabled: false
contact_links:
- name: Getting Help on IPFS
url: https://ipfs.io/help
about: All information about how and where to get help on IPFS.
- name: IPFS Official Forum
url: https://discuss.ipfs.io
about: Please post general questions, support requests, and discussions here.
---
name: Open an issue
about: Only for actionable issues relevant to this repository.
title: ''
labels: need/triage
assignees: ''
---
<!--
Hello! To ensure this issue is correctly addressed as soon as possible by the IPFS team, please try to make sure:
- This issue is relevant to this repository's topic or codebase.
- A clear description is provided. It should includes as much relevant information as possible and clear scope for the issue to be actionable.
FOR GENERAL DISCUSSION, HELP OR QUESTIONS, please see the options at https://ipfs.io/help or head directly to https://discuss.ipfs.io.
(you can delete this section after reading)
-->
# Configuration for welcome - https://github.com/behaviorbot/welcome
# Configuration for new-issue-welcome - https://github.com/behaviorbot/new-issue-welcome
# Comment to be posted to on first time issues
newIssueWelcomeComment: >
Thank you for submitting your first issue to this repository! A maintainer
will be here shortly to triage and review.
In the meantime, please double-check that you have provided all the
necessary information to make this process easy! Any information that can
help save additional round trips is useful! We currently aim to give
initial feedback within **two business days**. If this does not happen, feel
free to leave a comment.
Please keep an eye on how this issue will be labeled, as labels give an
overview of priorities, assignments and additional actions requested by the
maintainers:
- "Priority" labels will show how urgent this is for the team.
- "Status" labels will show if this is ready to be worked on, blocked, or in progress.
- "Need" labels will indicate if additional input or analysis is required.
Finally, remember to use https://discuss.ipfs.io if you just need general
support.
# Configuration for new-pr-welcome - https://github.com/behaviorbot/new-pr-welcome
# Comment to be posted to on PRs from first time contributors in your repository
newPRWelcomeComment: >
Thank you for submitting this PR!
A maintainer will be here shortly to review it.
We are super grateful, but we are also overloaded! Help us by making sure
that:
* The context for this PR is clear, with relevant discussion, decisions
and stakeholders linked/mentioned.
* Your contribution itself is clear (code comments, self-review for the
rest) and in its best form. Follow the [code contribution
guidelines](https://github.com/ipfs/community/blob/master/CONTRIBUTING.md#code-contribution-guidelines)
if they apply.
Getting other community members to do a review would be great help too on
complex PRs (you can ask in the chats/forums). If you are unsure about
something, just leave us a comment.
Next steps:
* A maintainer will triage and assign priority to this PR, commenting on
any missing things and potentially assigning a reviewer for high
priority items.
* The PR gets reviews, discussed and approvals as needed.
* The PR is merged by maintainers when it has been approved and comments addressed.
We currently aim to provide initial feedback/triaging within **two business
days**. Please keep an eye on any labelling actions, as these will indicate
priorities and status of your contribution.
We are very grateful for your contribution!
# Configuration for first-pr-merge - https://github.com/behaviorbot/first-pr-merge
# Comment to be posted to on pull requests merged by a first time user
# Currently disabled
#firstPRMergeComment: ""
cid-fuzz.zip
os:
- linux
language: go
go:
- 1.11.x
env:
global:
- GOTFLAGS="-race"
matrix:
- BUILD_DEPTYPE=gomod
# disable travis install
install:
- true
script:
- bash <(curl -s https://raw.githubusercontent.com/ipfs/ci-helpers/master/travis-ci/run-standard-tests.sh)
cache:
directories:
- $GOPATH/pkg/mod
- $HOME/.cache/go-build
notifications:
email: false
The MIT License (MIT)
Copyright (c) 2016 Protocol Labs, Inc.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
all: deps
deps:
go get github.com/mattn/goveralls
go get golang.org/x/tools/cmd/cover
# go-cid
go-cid
==================
dms3 go-cid
\ No newline at end of file
[![](https://img.shields.io/badge/made%20by-Protocol%20Labs-blue.svg?style=flat-square)](http://ipn.io)
[![](https://img.shields.io/badge/project-IPFS-blue.svg?style=flat-square)](http://ipfs.io/)
[![](https://img.shields.io/badge/freenode-%23ipfs-blue.svg?style=flat-square)](http://webchat.freenode.net/?channels=%23ipfs)
[![](https://img.shields.io/badge/readme%20style-standard-brightgreen.svg?style=flat-square)](https://github.com/RichardLitt/standard-readme)
[![GoDoc](https://godoc.org/github.com/ipfs/go-cid?status.svg)](https://godoc.org/github.com/ipfs/go-cid)
[![Coverage Status](https://coveralls.io/repos/github/ipfs/go-cid/badge.svg?branch=master)](https://coveralls.io/github/ipfs/go-cid?branch=master)
[![Travis CI](https://travis-ci.org/ipfs/go-cid.svg?branch=master)](https://travis-ci.org/ipfs/go-cid)
> A package to handle content IDs in Go.
This is an implementation in Go of the [CID spec](https://github.com/ipld/cid).
It is used in `go-ipfs` and related packages to refer to a typed hunk of data.
## Lead Maintainer
[Eric Myhre](https://github.com/warpfork)
## Table of Contents
- [Install](#install)
- [Usage](#usage)
- [API](#api)
- [Contribute](#contribute)
- [License](#license)
## Install
`go-cid` is a standard Go module which can be installed with:
```sh
go get github.com/ipfs/go-cid
```
## Usage
### Running tests
Run tests with `go test` from the directory root
```sh
go test
```
### Examples
#### Parsing string input from users
```go
// Create a cid from a marshaled string
c, err := cid.Decode("bafzbeigai3eoy2ccc7ybwjfz5r3rdxqrinwi4rwytly24tdbh6yk7zslrm")
if err != nil {...}
fmt.Println("Got CID: ", c)
```
#### Creating a CID from scratch
```go
// Create a cid manually by specifying the 'prefix' parameters
pref := cid.Prefix{
Version: 1,
Codec: cid.Raw,
MhType: mh.SHA2_256,
MhLength: -1, // default length
}
// And then feed it some data
c, err := pref.Sum([]byte("Hello World!"))
if err != nil {...}
fmt.Println("Created CID: ", c)
```
#### Check if two CIDs match
```go
// To test if two cid's are equivalent, be sure to use the 'Equals' method:
if c1.Equals(c2) {
fmt.Println("These two refer to the same exact data!")
}
```
#### Check if some data matches a given CID
```go
// To check if some data matches a given cid,
// Get your CIDs prefix, and use that to sum the data in question:
other, err := c.Prefix().Sum(mydata)
if err != nil {...}
if !c.Equals(other) {
fmt.Println("This data is different.")
}
```
## Contribute
PRs are welcome!
Small note: If editing the Readme, please conform to the [standard-readme](https://github.com/RichardLitt/standard-readme) specification.
## License
MIT © Jeromy Johnson
What golang Kinds work best to implement CIDs?
==============================================
There are many possible ways to implement CIDs. This package explores them.
### criteria
There's a couple different criteria to consider:
- We want the best performance when operating on the type (getters, mostly);
- We want to minimize the number of memory allocations we need;
- We want types which can be used as map keys, because this is common.
The priority of these criteria is open to argument, but it's probably
mapkeys > minalloc > anythingelse.
(Mapkeys and minalloc are also quite entangled, since if we don't pick a
representation that can work natively as a map key, we'll end up needing
a `KeyRepr()` method which gives us something that does work as a map key,
an that will almost certainly involve a malloc itself.)
### options
There are quite a few different ways to go:
- Option A: CIDs as a struct; multihash as bytes.
- Option B: CIDs as a string.
- Option C: CIDs as an interface with multiple implementors.
- Option D: CIDs as a struct; multihash also as a struct or string.
- Option E: CIDs as a struct; content as strings plus offsets.
- Option F: CIDs as a struct wrapping only a string.
The current approach on the master branch is Option A.
Option D is distinctive from Option A because multihash as bytes transitively
causes the CID struct to be non-comparible and thus not suitable for map keys
as per https://golang.org/ref/spec#KeyType . (It's also a bit more work to
pursue Option D because it's just a bigger splash radius of change; but also,
something we might also want to do soon, because we *do* also have these same
map-key-usability concerns with multihash alone.)
Option E is distinctive from Option D because Option E would always maintain
the binary format of the cid internally, and so could yield it again without
malloc, while still potentially having faster access to components than
Option B since it wouldn't need to re-parse varints to access later fields.
Option F is actually a varation of Option B; it's distinctive from the other
struct options because it is proposing *literally* `struct{ x string }` as
the type, with no additional fields for components nor offsets.
Option C is the avoid-choices choice, but note that interfaces are not free;
since "minimize mallocs" is one of our major goals, we cannot use interfaces
whimsically.
Note there is no proposal for migrating to `type Cid []bytes`, because that
is generally considered to be strictly inferior to `type Cid string`.
Discoveries
-----------
### using interfaces as map keys forgoes a lot of safety checks
Using interfaces as map keys pushes a bunch of type checking to runtime.
E.g., it's totally valid at compile time to push a type which is non-comparable
into a map key; it will panic at *runtime* instead of failing at compile-time.
There's also no way to define equality checks between implementors of the
interface: golang will always use its innate concept of comparison for the
concrete types. This means its effectively *never safe* to use two different
concrete implementations of an interface in the same map; you may add elements
which are semantically "equal" in your mind, and end up very confused later
when both impls of the same "equal" object have been stored.
### sentinel values are possible in any impl, but some are clearer than others
When using `*Cid`, the nil value is a clear sentinel for 'invalid';
when using `type Cid string`, the zero value is a clear sentinel;
when using `type Cid struct` per Option A or D... the only valid check is
for a nil multihash field, since version=0 and codec=0 are both valid values.
When using `type Cid struct{string}` per Option F, zero is a clear sentinel.
### usability as a map key is important
We already covered this in the criteria section, but for clarity:
- Option A: ❌
- Option B: ✔
- Option C: ~ (caveats, and depends on concrete impl)
- Option D: ✔
- Option E: ✔
- Option F: ✔
### living without offsets requires parsing
Since CID (and multihash!) are defined using varints, they require parsing;
we can't just jump into the string at a known offset in order to yield e.g.
the multicodec number.
In order to get to the 'meat' of the CID (the multihash content), we first
must parse:
- the CID version varint;
- the multicodec varint;
- the multihash type enum varint;
- and the multihash length varint.
Since there are many applications where we want to jump straight to the
multihash content (for example, when doing CAS sharding -- see the
[disclaimer](https://github.com/multiformats/multihash#disclaimers) about
bias in leading bytes), this overhead may be interesting.
How much this overhead is significant is hard to say from microbenchmarking;
it depends largely on usage patterns. If these traversals are a significant
timesink, it would be an argument for Option D/E.
If these traversals are *not* a significant timesink, we might be wiser
to keep to Option B/F, because keeping a struct full of offsets will add several
words of memory usage per CID, and we keep a *lot* of CIDs.
### interfaces cause boxing which is a significant performance cost
See `BenchmarkCidMap_CidStr` and friends.
Long story short: using interfaces *anywhere* will cause the compiler to
implicitly generate boxing and unboxing code (e.g. `runtime.convT2E`);
this is both another function call, and more concerningly, results in
large numbers of unbatchable memory allocations.
Numbers without context are dangerous, but if you need one: 33%.
It's a big deal.
This means attempts to "use interfaces, but switch to concrete impls when
performance is important" are a red herring: it doesn't work that way.
This is not a general inditement against using interfaces -- but
if a situation is at the scale where it's become important to mind whether
or not pointers are a performance impact, then that situation also
is one where you have to think twice before using interfaces.
### struct wrappers can be used in place of typedefs with zero overhead
See `TestSizeOf`.
Using the `unsafe.Sizeof` feature to inspect what the Go runtime thinks,
we can see that `type Foo string` and `type Foo struct{x string}` consume
precisely the same amount of memory.
This is interesting because it means we can choose between either
type definition with no significant overhead anywhere we use it:
thus, we can choose freely between Option B and Option F based on which
we feel is more pleasant to work with.
Option F (a struct wrapper) means we can prevent casting into our Cid type.
Option B (typedef string) can be declared a `const`.
Are there any other concerns that would separate the two choices?
### one way or another: let's get rid of that star
We should switch completely to handling `Cid` and remove `*Cid` completely.
Regardless of whether we do this by migrating to interface, or string
implementations, or simply structs with no pointers... once we get there,
refactoring to any of the *others* can become a no-op from the perspective
of any downstream code that uses CIDs.
(This means all access via functions, never references to fields -- even if
we were to use a struct implementation. *Pretend* there's a interface,
in other words.)
There are probably `gofix` incantations which can help us with this migration.
package cid
import (
mh "github.com/multiformats/go-multihash"
)
// Cid represents a self-describing content adressed identifier.
//
// A CID is composed of:
//
// - a Version of the CID itself,
// - a Multicodec (indicates the encoding of the referenced content),
// - and a Multihash (which identifies the referenced content).
//
// (Note that the Multihash further contains its own version and hash type
// indicators.)
type Cid interface {
// n.b. 'yields' means "without copy", 'produces' means a malloc.
Version() uint64 // Yields the version prefix as a uint.
Multicodec() uint64 // Yields the multicodec as a uint.
Multihash() mh.Multihash // Yields the multihash segment.
String() string // Produces the CID formatted as b58 string.
Bytes() []byte // Produces the CID formatted as raw binary.
Prefix() Prefix // Produces a tuple of non-content metadata.
// some change notes:
// - `KeyString() CidString` is gone because we're natively a map key now, you're welcome.
// - `StringOfBase(mbase.Encoding) (string, error)` is skipped, maybe it can come back but maybe it should be a formatter's job.
// - `Equals(o Cid) bool` is gone because it's now `==`, you're welcome.
// TODO: make a multi-return method for {v,mc,mh} decomposition. CidStr will be able to implement this more efficiently than if one makes a series of the individual getter calls.
}
// Prefix represents all the metadata of a Cid,
// that is, the Version, the Codec, the Multihash type
// and the Multihash length. It does not contains
// any actual content information.
// NOTE: The use -1 in MhLength to mean default length is deprecated,
// use the V0Builder or V1Builder structures instead
type Prefix struct {
Version uint64
Codec uint64
MhType uint64
MhLength int
}
package cid
import (
"testing"
)
// BenchmarkCidMap_CidStr estimates how fast it is to insert primitives into a map
// keyed by CidStr (concretely).
//
// We do 100 insertions per benchmark run to make sure the map initialization
// doesn't dominate the results.
//
// Sample results on linux amd64 go1.11beta:
//
// BenchmarkCidMap_CidStr-8 100000 16317 ns/op
// BenchmarkCidMap_CidIface-8 100000 20516 ns/op
//
// With benchmem on:
//
// BenchmarkCidMap_CidStr-8 100000 15579 ns/op 11223 B/op 207 allocs/op
// BenchmarkCidMap_CidIface-8 100000 19500 ns/op 12824 B/op 307 allocs/op
// BenchmarkCidMap_StrPlusHax-8 200000 10451 ns/op 7589 B/op 202 allocs/op
//
// We can see here that the impact of interface boxing is significant:
// it increases the time taken to do the inserts to 133%, largely because
// the implied `runtime.convT2E` calls cause another malloc each.
//
// There are also significant allocations in both cases because
// A) we cannot create a multihash without allocations since they are []byte;
// B) the map has to be grown several times;
// C) something I haven't quite put my finger on yet.
// Ideally we'd drive those down further as well.
//
// Pre-allocating the map reduces allocs by a very small percentage by *count*,
// but reduces the time taken by 66% overall (presumably because when a map
// re-arranges itself, it involves more or less an O(n) copy of the content
// in addition to the alloc itself). This isn't topical to the question of
// whether or not interfaces are a good idea; just for contextualizing.
//
func BenchmarkCidMap_CidStr(b *testing.B) {
for i := 0; i < b.N; i++ {
mp := map[CidStr]int{}
for x := 0; x < 100; x++ {
mp[NewCidStr(0, uint64(x), []byte{})] = x
}
}
}
// BenchmarkCidMap_CidIface is in the family of BenchmarkCidMap_CidStr:
// it is identical except the map key type is declared as an interface
// (which forces all insertions to be boxed, changing performance).
func BenchmarkCidMap_CidIface(b *testing.B) {
for i := 0; i < b.N; i++ {
mp := map[Cid]int{}
for x := 0; x < 100; x++ {
mp[NewCidStr(0, uint64(x), []byte{})] = x
}
}
}
// BenchmarkCidMap_CidStrAvoidMapGrowth is in the family of BenchmarkCidMap_CidStr:
// it is identical except the map is created with a size hint that removes
// some allocations (5, in practice, apparently).
func BenchmarkCidMap_CidStrAvoidMapGrowth(b *testing.B) {
for i := 0; i < b.N; i++ {
mp := make(map[CidStr]int, 100)
for x := 0; x < 100; x++ {
mp[NewCidStr(0, uint64(x), []byte{})] = x
}
}
}
package cid
import (
"encoding/binary"
"fmt"
mbase "github.com/multiformats/go-multibase"
mh "github.com/multiformats/go-multihash"
)
//=================
// def & accessors
//=================
var _ Cid = CidStr("")
var _ map[CidStr]struct{} = nil
// CidStr is a representation of a Cid as a string type containing binary.
//
// Using golang's string type is preferable over byte slices even for binary
// data because golang strings are immutable, usable as map keys,
// trivially comparable with built-in equals operators, etc.
//
// Please do not cast strings or bytes into the CidStr type directly;
// use a parse method which validates the data and yields a CidStr.
type CidStr string
// EmptyCidStr is a constant for a zero/uninitialized/sentinelvalue cid;
// it is declared mainly for readability in checks for sentinel values.
const EmptyCidStr = CidStr("")
func (c CidStr) Version() uint64 {
bytes := []byte(c)
v, _ := binary.Uvarint(bytes)
return v
}
func (c CidStr) Multicodec() uint64 {
bytes := []byte(c)
_, n := binary.Uvarint(bytes) // skip version length
codec, _ := binary.Uvarint(bytes[n:])
return codec
}
func (c CidStr) Multihash() mh.Multihash {
bytes := []byte(c)
_, n1 := binary.Uvarint(bytes) // skip version length
_, n2 := binary.Uvarint(bytes[n1:]) // skip codec length
return mh.Multihash(bytes[n1+n2:]) // return slice of remainder
}
// String returns the default string representation of a Cid.
// Currently, Base58 is used as the encoding for the multibase string.
func (c CidStr) String() string {
switch c.Version() {
case 0:
return c.Multihash().B58String()
case 1:
mbstr, err := mbase.Encode(mbase.Base58BTC, []byte(c))
if err != nil {
panic("should not error with hardcoded mbase: " + err.Error())
}
return mbstr
default:
panic("not possible to reach this point")
}
}
// Bytes produces a raw binary format of the CID.
//
// (For CidStr, this method is only distinct from casting because of
// compatibility with v0 CIDs.)
func (c CidStr) Bytes() []byte {
switch c.Version() {
case 0:
return c.Multihash()
case 1:
return []byte(c)
default:
panic("not possible to reach this point")
}
}
// Prefix builds and returns a Prefix out of a Cid.
func (c CidStr) Prefix() Prefix {
dec, _ := mh.Decode(c.Multihash()) // assuming we got a valid multiaddr, this will not error
return Prefix{
MhType: dec.Code,
MhLength: dec.Length,
Version: c.Version(),
Codec: c.Multicodec(),
}
}
//==================================
// parsers & validators & factories
//==================================
func NewCidStr(version uint64, codecType uint64, mhash mh.Multihash) CidStr {
hashlen := len(mhash)
// two 8 bytes (max) numbers plus hash
buf := make([]byte, 2*binary.MaxVarintLen64+hashlen)
n := binary.PutUvarint(buf, version)
n += binary.PutUvarint(buf[n:], codecType)
cn := copy(buf[n:], mhash)
if cn != hashlen {
panic("copy hash length is inconsistent")
}
return CidStr(buf[:n+hashlen])
}
// CidStrParse takes a binary byte slice, parses it, and returns either
// a valid CidStr, or the zero CidStr and an error.
//
// For CidV1, the data buffer is in the form:
//
// <version><codec-type><multihash>
//
// CidV0 are also supported. In particular, data buffers starting
// with length 34 bytes, which starts with bytes [18,32...] are considered
// binary multihashes.
//
// The multicodec bytes are not parsed to verify they're a valid varint;
// no further reification is performed.
//
// Multibase encoding should already have been unwrapped before parsing;
// if you have a multibase-enveloped string, use CidStrDecode instead.
//
// CidStrParse is the inverse of Cid.Bytes().
func CidStrParse(data []byte) (CidStr, error) {
if len(data) == 34 && data[0] == 18 && data[1] == 32 {
h, err := mh.Cast(data)
if err != nil {
return EmptyCidStr, err
}
return NewCidStr(0, DagProtobuf, h), nil
}
vers, n := binary.Uvarint(data)
if err := uvError(n); err != nil {
return EmptyCidStr, err
}
if vers != 0 && vers != 1 {
return EmptyCidStr, fmt.Errorf("invalid cid version number: %d", vers)
}
_, cn := binary.Uvarint(data[n:])
if err := uvError(cn); err != nil {
return EmptyCidStr, err
}
rest := data[n+cn:]
h, err := mh.Cast(rest)
if err != nil {
return EmptyCidStr, err
}
// REVIEW: if the data is longer than the mh.len expects, we silently ignore it? should we?
return CidStr(data[0 : n+cn+len(h)]), nil
}
package cid
import (
"encoding/binary"
"fmt"
mbase "github.com/multiformats/go-multibase"
mh "github.com/multiformats/go-multihash"
)
//=================
// def & accessors
//=================
var _ Cid = CidStruct{}
//var _ map[CidStruct]struct{} = nil // Will not compile! See struct def docs.
//var _ map[Cid]struct{} = map[Cid]struct{}{CidStruct{}: struct{}{}} // Legal to compile...
// but you'll get panics: "runtime error: hash of unhashable type cid.CidStruct"
// CidStruct represents a CID in a struct format.
//
// This format complies with the exact same Cid interface as the CidStr
// implementation, but completely pre-parses the Cid metadata.
// CidStruct is a tad quicker in case of repeatedly accessed fields,
// but requires more reshuffling to parse and to serialize.
// CidStruct is not usable as a map key, because it contains a Multihash
// reference, which is a slice, and thus not "comparable" as a primitive.
//
// Beware of zero-valued CidStruct: it is difficult to distinguish an
// incorrectly-initialized "invalid" CidStruct from one representing a v0 cid.
type CidStruct struct {
version uint64
codec uint64
hash mh.Multihash
}
// EmptyCidStruct is a constant for a zero/uninitialized/sentinelvalue cid;
// it is declared mainly for readability in checks for sentinel values.
//
// Note: it's not actually a const; the compiler does not allow const structs.
var EmptyCidStruct = CidStruct{}
func (c CidStruct) Version() uint64 {
return c.version
}
func (c CidStruct) Multicodec() uint64 {
return c.codec
}
func (c CidStruct) Multihash() mh.Multihash {
return c.hash
}
// String returns the default string representation of a Cid.
// Currently, Base58 is used as the encoding for the multibase string.
func (c CidStruct) String() string {
switch c.Version() {
case 0:
return c.Multihash().B58String()
case 1:
mbstr, err := mbase.Encode(mbase.Base58BTC, c.Bytes())
if err != nil {
panic("should not error with hardcoded mbase: " + err.Error())
}
return mbstr
default:
panic("not possible to reach this point")
}
}
// Bytes produces a raw binary format of the CID.
func (c CidStruct) Bytes() []byte {
switch c.version {
case 0:
return []byte(c.hash)
case 1:
// two 8 bytes (max) numbers plus hash
buf := make([]byte, 2*binary.MaxVarintLen64+len(c.hash))
n := binary.PutUvarint(buf, c.version)
n += binary.PutUvarint(buf[n:], c.codec)
cn := copy(buf[n:], c.hash)
if cn != len(c.hash) {
panic("copy hash length is inconsistent")
}
return buf[:n+len(c.hash)]
default:
panic("not possible to reach this point")
}
}
// Prefix builds and returns a Prefix out of a Cid.
func (c CidStruct) Prefix() Prefix {
dec, _ := mh.Decode(c.hash) // assuming we got a valid multiaddr, this will not error
return Prefix{
MhType: dec.Code,
MhLength: dec.Length,
Version: c.version,
Codec: c.codec,
}
}
//==================================
// parsers & validators & factories
//==================================
// CidStructParse takes a binary byte slice, parses it, and returns either
// a valid CidStruct, or the zero CidStruct and an error.
//
// For CidV1, the data buffer is in the form:
//
// <version><codec-type><multihash>
//
// CidV0 are also supported. In particular, data buffers starting
// with length 34 bytes, which starts with bytes [18,32...] are considered
// binary multihashes.
//
// The multicodec bytes are not parsed to verify they're a valid varint;
// no further reification is performed.
//
// Multibase encoding should already have been unwrapped before parsing;
// if you have a multibase-enveloped string, use CidStructDecode instead.
//
// CidStructParse is the inverse of Cid.Bytes().
func CidStructParse(data []byte) (CidStruct, error) {
if len(data) == 34 && data[0] == 18 && data[1] == 32 {
h, err := mh.Cast(data)
if err != nil {
return EmptyCidStruct, err
}
return CidStruct{
codec: DagProtobuf,
version: 0,
hash: h,
}, nil
}
vers, n := binary.Uvarint(data)
if err := uvError(n); err != nil {
return EmptyCidStruct, err
}
if vers != 0 && vers != 1 {
return EmptyCidStruct, fmt.Errorf("invalid cid version number: %d", vers)
}
codec, cn := binary.Uvarint(data[n:])
if err := uvError(cn); err != nil {
return EmptyCidStruct, err
}
rest := data[n+cn:]
h, err := mh.Cast(rest)
if err != nil {
return EmptyCidStruct, err
}
return CidStruct{
version: vers,
codec: codec,
hash: h,
}, nil
}
package cid
// These are multicodec-packed content types. The should match
// the codes described in the authoritative document:
// https://github.com/multiformats/multicodec/blob/master/table.csv
const (
Raw = 0x55
DagProtobuf = 0x70
DagCBOR = 0x71
Libp2pKey = 0x72
GitRaw = 0x78
EthBlock = 0x90
EthBlockList = 0x91
EthTxTrie = 0x92
EthTx = 0x93
EthTxReceiptTrie = 0x94
EthTxReceipt = 0x95
EthStateTrie = 0x96
EthAccountSnapshot = 0x97
EthStorageTrie = 0x98
BitcoinBlock = 0xb0
BitcoinTx = 0xb1
ZcashBlock = 0xc0
ZcashTx = 0xc1
DecredBlock = 0xe0
DecredTx = 0xe1
)
// Codecs maps the name of a codec to its type
var Codecs = map[string]uint64{
"v0": DagProtobuf,
"raw": Raw,
"protobuf": DagProtobuf,
"cbor": DagCBOR,
"libp2p-key": Libp2pKey,
"git-raw": GitRaw,
"eth-block": EthBlock,
"eth-block-list": EthBlockList,
"eth-tx-trie": EthTxTrie,
"eth-tx": EthTx,
"eth-tx-receipt-trie": EthTxReceiptTrie,
"eth-tx-receipt": EthTxReceipt,
"eth-state-trie": EthStateTrie,
"eth-account-snapshot": EthAccountSnapshot,
"eth-storage-trie": EthStorageTrie,
"bitcoin-block": BitcoinBlock,
"bitcoin-tx": BitcoinTx,
"zcash-block": ZcashBlock,
"zcash-tx": ZcashTx,
"decred-block": DecredBlock,
"decred-tx": DecredTx,
}
// CodecToStr maps the numeric codec to its name
var CodecToStr = map[uint64]string{
Raw: "raw",
DagProtobuf: "protobuf",
DagCBOR: "cbor",
Libp2pKey: "libp2p-key",
GitRaw: "git-raw",
EthBlock: "eth-block",
EthBlockList: "eth-block-list",
EthTxTrie: "eth-tx-trie",
EthTx: "eth-tx",
EthTxReceiptTrie: "eth-tx-receipt-trie",
EthTxReceipt: "eth-tx-receipt",
EthStateTrie: "eth-state-trie",
EthAccountSnapshot: "eth-account-snapshot",
EthStorageTrie: "eth-storage-trie",
BitcoinBlock: "bitcoin-block",
BitcoinTx: "bitcoin-tx",
ZcashBlock: "zcash-block",
ZcashTx: "zcash-tx",
DecredBlock: "decred-block",
DecredTx: "decred-tx",
}
package cid
import (
"errors"
)
var (
// ErrVarintBuffSmall means that a buffer passed to the cid parser was not
// long enough, or did not contain an invalid cid
ErrVarintBuffSmall = errors.New("reading varint: buffer too small")
// ErrVarintTooBig means that the varint in the given cid was above the
// limit of 2^64
ErrVarintTooBig = errors.New("reading varint: varint bigger than 64bits" +
" and not supported")
// ErrCidTooShort means that the cid passed to decode was not long
// enough to be a valid Cid
ErrCidTooShort = errors.New("cid too short")
// ErrInvalidEncoding means that selected encoding is not supported
// by this Cid version
ErrInvalidEncoding = errors.New("invalid base encoding")
)
package cid
func uvError(read int) error {
switch {
case read == 0:
return ErrVarintBuffSmall
case read < 0:
return ErrVarintTooBig
default:
return nil
}
}
package cid
import (
mh "github.com/multiformats/go-multihash"
)
type Builder interface {
Sum(data []byte) (Cid, error)
GetCodec() uint64
WithCodec(uint64) Builder
}
type V0Builder struct{}
type V1Builder struct {
Codec uint64
MhType uint64
MhLength int // MhLength <= 0 means the default length
}
func (p Prefix) GetCodec() uint64 {
return p.Codec
}
func (p Prefix) WithCodec(c uint64) Builder {
if c == p.Codec {
return p
}
p.Codec = c
if c != DagProtobuf {
p.Version = 1
}
return p
}
func (p V0Builder) Sum(data []byte) (Cid, error) {
hash, err := mh.Sum(data, mh.SHA2_256, -1)
if err != nil {
return Undef, err
}
return Cid{string(hash)}, nil
}
func (p V0Builder) GetCodec() uint64 {
return DagProtobuf
}
func (p V0Builder) WithCodec(c uint64) Builder {
if c == DagProtobuf {
return p
}
return V1Builder{Codec: c, MhType: mh.SHA2_256}
}
func (p V1Builder) Sum(data []byte) (Cid, error) {
mhLen := p.MhLength
if mhLen <= 0 {
mhLen = -1
}
hash, err := mh.Sum(data, p.MhType, mhLen)
if err != nil {
return Undef, err
}
return NewCidV1(p.Codec, hash), nil
}
func (p V1Builder) GetCodec() uint64 {
return p.Codec
}
func (p V1Builder) WithCodec(c uint64) Builder {
p.Codec = c
return p
}
package cid
import (
"testing"
mh "github.com/multiformats/go-multihash"
)
func TestV0Builder(t *testing.T) {
data := []byte("this is some test content")
// Construct c1
format := V0Builder{}
c1, err := format.Sum(data)
if err != nil {
t.Fatal(err)
}
// Construct c2
hash, err := mh.Sum(data, mh.SHA2_256, -1)
if err != nil {
t.Fatal(err)
}
c2 := NewCidV0(hash)
if !c1.Equals(c2) {
t.Fatal("cids mismatch")
}
if c1.Prefix() != c2.Prefix() {
t.Fatal("prefixes mismatch")
}
}
func TestV1Builder(t *testing.T) {
data := []byte("this is some test content")
// Construct c1
format := V1Builder{Codec: DagCBOR, MhType: mh.SHA2_256}
c1, err := format.Sum(data)
if err != nil {
t.Fatal(err)
}
// Construct c2
hash, err := mh.Sum(data, mh.SHA2_256, -1)
if err != nil {
t.Fatal(err)
}
c2 := NewCidV1(DagCBOR, hash)
if !c1.Equals(c2) {
t.Fatal("cids mismatch")
}
if c1.Prefix() != c2.Prefix() {
t.Fatal("prefixes mismatch")
}
}
func TestCodecChange(t *testing.T) {
t.Run("Prefix-CidV0", func(t *testing.T) {
p := Prefix{Version: 0, Codec: DagProtobuf, MhType: mh.SHA2_256, MhLength: mh.DefaultLengths[mh.SHA2_256]}
testCodecChange(t, p)
})
t.Run("Prefix-CidV1", func(t *testing.T) {
p := Prefix{Version: 1, Codec: DagProtobuf, MhType: mh.SHA2_256, MhLength: mh.DefaultLengths[mh.SHA2_256]}
testCodecChange(t, p)
})
t.Run("Prefix-NoChange", func(t *testing.T) {
p := Prefix{Version: 0, Codec: DagProtobuf, MhType: mh.SHA2_256, MhLength: mh.DefaultLengths[mh.SHA2_256]}
if p.GetCodec() != DagProtobuf {
t.Fatal("original builder not using Protobuf codec")
}
pn := p.WithCodec(DagProtobuf)
if pn != p {
t.Fatal("should have returned same builder")
}
})
t.Run("V0Builder", func(t *testing.T) {
testCodecChange(t, V0Builder{})
})
t.Run("V0Builder-NoChange", func(t *testing.T) {
b := V0Builder{}
if b.GetCodec() != DagProtobuf {
t.Fatal("original builder not using Protobuf codec")
}
bn := b.WithCodec(DagProtobuf)
if bn != b {
t.Fatal("should have returned same builder")
}
})
t.Run("V1Builder", func(t *testing.T) {
testCodecChange(t, V1Builder{Codec: DagProtobuf, MhType: mh.SHA2_256})
})
}
func testCodecChange(t *testing.T, b Builder) {
data := []byte("this is some test content")
if b.GetCodec() != DagProtobuf {
t.Fatal("original builder not using Protobuf codec")
}
b = b.WithCodec(Raw)
c, err := b.Sum(data)
if err != nil {
t.Fatal(err)
}
if c.Type() != Raw {
t.Fatal("new cid codec did not change to Raw")
}
}
// Package cid implements the Content-IDentifiers specification
// (https://github.com/ipld/cid) in Go. CIDs are
// self-describing content-addressed identifiers useful for
// distributed information systems. CIDs are used in the IPFS
// (https://ipfs.io) project ecosystem.
//
// CIDs have two major versions. A CIDv0 corresponds to a multihash of type
// DagProtobuf, is deprecated and exists for compatibility reasons. Usually,
// CIDv1 should be used.
//
// A CIDv1 has four parts:
//
// <cidv1> ::= <multibase-prefix><cid-version><multicodec-packed-content-type><multihash-content-address>
//
// As shown above, the CID implementation relies heavily on Multiformats,
// particularly Multibase
// (https://github.com/multiformats/go-multibase), Multicodec
// (https://github.com/multiformats/multicodec) and Multihash
// implementations (https://github.com/multiformats/go-multihash).
package cid
import (
"bytes"
"encoding"
"encoding/json"
"errors"
"fmt"
"io"
"strings"
mbase "github.com/multiformats/go-multibase"
mh "github.com/multiformats/go-multihash"
varint "github.com/multiformats/go-varint"
)
// UnsupportedVersionString just holds an error message
const UnsupportedVersionString = "<unsupported cid version>"
var (
// ErrCidTooShort means that the cid passed to decode was not long
// enough to be a valid Cid
ErrCidTooShort = errors.New("cid too short")
// ErrInvalidEncoding means that selected encoding is not supported
// by this Cid version
ErrInvalidEncoding = errors.New("invalid base encoding")
)
// These are multicodec-packed content types. The should match
// the codes described in the authoritative document:
// https://github.com/multiformats/multicodec/blob/master/table.csv
const (
Raw = 0x55
DagProtobuf = 0x70
DagCBOR = 0x71
Libp2pKey = 0x72
GitRaw = 0x78
DagJOSE = 0x85
EthBlock = 0x90
EthBlockList = 0x91
EthTxTrie = 0x92
EthTx = 0x93
EthTxReceiptTrie = 0x94
EthTxReceipt = 0x95
EthStateTrie = 0x96
EthAccountSnapshot = 0x97
EthStorageTrie = 0x98
BitcoinBlock = 0xb0
BitcoinTx = 0xb1
ZcashBlock = 0xc0
ZcashTx = 0xc1
DecredBlock = 0xe0
DecredTx = 0xe1
DashBlock = 0xf0
DashTx = 0xf1
FilCommitmentUnsealed = 0xf101
FilCommitmentSealed = 0xf102
)
// Codecs maps the name of a codec to its type
var Codecs = map[string]uint64{
"v0": DagProtobuf,
"raw": Raw,
"protobuf": DagProtobuf,
"cbor": DagCBOR,
"libp2p-key": Libp2pKey,
"git-raw": GitRaw,
"eth-block": EthBlock,
"eth-block-list": EthBlockList,
"eth-tx-trie": EthTxTrie,
"eth-tx": EthTx,
"eth-tx-receipt-trie": EthTxReceiptTrie,
"eth-tx-receipt": EthTxReceipt,
"eth-state-trie": EthStateTrie,
"eth-account-snapshot": EthAccountSnapshot,
"eth-storage-trie": EthStorageTrie,
"bitcoin-block": BitcoinBlock,
"bitcoin-tx": BitcoinTx,
"zcash-block": ZcashBlock,
"zcash-tx": ZcashTx,
"decred-block": DecredBlock,
"decred-tx": DecredTx,
"dash-block": DashBlock,
"dash-tx": DashTx,
"fil-commitment-unsealed": FilCommitmentUnsealed,
"fil-commitment-sealed": FilCommitmentSealed,
"dag-jose": DagJOSE,
}
// CodecToStr maps the numeric codec to its name
var CodecToStr = map[uint64]string{
Raw: "raw",
DagProtobuf: "protobuf",
DagCBOR: "cbor",
GitRaw: "git-raw",
EthBlock: "eth-block",
EthBlockList: "eth-block-list",
EthTxTrie: "eth-tx-trie",
EthTx: "eth-tx",
EthTxReceiptTrie: "eth-tx-receipt-trie",
EthTxReceipt: "eth-tx-receipt",
EthStateTrie: "eth-state-trie",
EthAccountSnapshot: "eth-account-snapshot",
EthStorageTrie: "eth-storage-trie",
BitcoinBlock: "bitcoin-block",
BitcoinTx: "bitcoin-tx",
ZcashBlock: "zcash-block",
ZcashTx: "zcash-tx",
DecredBlock: "decred-block",
DecredTx: "decred-tx",
DashBlock: "dash-block",
DashTx: "dash-tx",
FilCommitmentUnsealed: "fil-commitment-unsealed",
FilCommitmentSealed: "fil-commitment-sealed",
DagJOSE: "dag-jose",
}
// tryNewCidV0 tries to convert a multihash into a CIDv0 CID and returns an
// error on failure.
func tryNewCidV0(mhash mh.Multihash) (Cid, error) {
// Need to make sure hash is valid for CidV0 otherwise we will
// incorrectly detect it as CidV1 in the Version() method
dec, err := mh.Decode(mhash)
if err != nil {
return Undef, err
}
if dec.Code != mh.SHA2_256 || dec.Length != 32 {
return Undef, fmt.Errorf("invalid hash for cidv0 %d-%d", dec.Code, dec.Length)
}
return Cid{string(mhash)}, nil
}
// NewCidV0 returns a Cid-wrapped multihash.
// They exist to allow IPFS to work with Cids while keeping
// compatibility with the plain-multihash format used used in IPFS.
// NewCidV1 should be used preferentially.
//
// Panics if the multihash isn't sha2-256.
func NewCidV0(mhash mh.Multihash) Cid {
c, err := tryNewCidV0(mhash)
if err != nil {
panic(err)
}
return c
}
// NewCidV1 returns a new Cid using the given multicodec-packed
// content type.
//
// Panics if the multihash is invalid.
func NewCidV1(codecType uint64, mhash mh.Multihash) Cid {
hashlen := len(mhash)
// two 8 bytes (max) numbers plus hash
buf := make([]byte, 1+varint.UvarintSize(codecType)+hashlen)
n := varint.PutUvarint(buf, 1)
n += varint.PutUvarint(buf[n:], codecType)
cn := copy(buf[n:], mhash)
if cn != hashlen {
panic("copy hash length is inconsistent")
}
return Cid{string(buf[:n+hashlen])}
}
var _ encoding.BinaryMarshaler = Cid{}
var _ encoding.BinaryUnmarshaler = (*Cid)(nil)
var _ encoding.TextMarshaler = Cid{}
var _ encoding.TextUnmarshaler = (*Cid)(nil)
// Cid represents a self-describing content addressed
// identifier. It is formed by a Version, a Codec (which indicates
// a multicodec-packed content type) and a Multihash.
type Cid struct{ str string }
// Undef can be used to represent a nil or undefined Cid, using Cid{}
// directly is also acceptable.
var Undef = Cid{}
// Defined returns true if a Cid is defined
// Calling any other methods on an undefined Cid will result in
// undefined behavior.
func (c Cid) Defined() bool {
return c.str != ""
}
// Parse is a short-hand function to perform Decode, Cast etc... on
// a generic interface{} type.
func Parse(v interface{}) (Cid, error) {
switch v2 := v.(type) {
case string:
if strings.Contains(v2, "/ipfs/") {
return Decode(strings.Split(v2, "/ipfs/")[1])
}
return Decode(v2)
case []byte:
return Cast(v2)
case mh.Multihash:
return tryNewCidV0(v2)
case Cid:
return v2, nil
default:
return Undef, fmt.Errorf("can't parse %+v as Cid", v2)
}
}
// Decode parses a Cid-encoded string and returns a Cid object.
// For CidV1, a Cid-encoded string is primarily a multibase string:
//
// <multibase-type-code><base-encoded-string>
//
// The base-encoded string represents a:
//
// <version><codec-type><multihash>
//
// Decode will also detect and parse CidV0 strings. Strings
// starting with "Qm" are considered CidV0 and treated directly
// as B58-encoded multihashes.
func Decode(v string) (Cid, error) {
if len(v) < 2 {
return Undef, ErrCidTooShort
}
if len(v) == 46 && v[:2] == "Qm" {
hash, err := mh.FromB58String(v)
if err != nil {
return Undef, err
}
return tryNewCidV0(hash)
}
_, data, err := mbase.Decode(v)
if err != nil {
return Undef, err
}
return Cast(data)
}
// Extract the encoding from a Cid. If Decode on the same string did
// not return an error neither will this function.
func ExtractEncoding(v string) (mbase.Encoding, error) {
if len(v) < 2 {
return -1, ErrCidTooShort
}
if len(v) == 46 && v[:2] == "Qm" {
return mbase.Base58BTC, nil
}
encoding := mbase.Encoding(v[0])
// check encoding is valid
_, err := mbase.NewEncoder(encoding)
if err != nil {
return -1, err
}
return encoding, nil
}
// Cast takes a Cid data slice, parses it and returns a Cid.
// For CidV1, the data buffer is in the form:
//
// <version><codec-type><multihash>
//
// CidV0 are also supported. In particular, data buffers starting
// with length 34 bytes, which starts with bytes [18,32...] are considered
// binary multihashes.
//
// Please use decode when parsing a regular Cid string, as Cast does not
// expect multibase-encoded data. Cast accepts the output of Cid.Bytes().
func Cast(data []byte) (Cid, error) {
nr, c, err := CidFromBytes(data)
if err != nil {
return Undef, err
}
if nr != len(data) {
return Undef, fmt.Errorf("trailing bytes in data buffer passed to cid Cast")
}
return c, nil
}
// UnmarshalBinary is equivalent to Cast(). It implements the
// encoding.BinaryUnmarshaler interface.
func (c *Cid) UnmarshalBinary(data []byte) error {
casted, err := Cast(data)
if err != nil {
return err
}
c.str = casted.str
return nil
}
// UnmarshalText is equivalent to Decode(). It implements the
// encoding.TextUnmarshaler interface.
func (c *Cid) UnmarshalText(text []byte) error {
decodedCid, err := Decode(string(text))
if err != nil {
return err
}
c.str = decodedCid.str
return nil
}
// Version returns the Cid version.
func (c Cid) Version() uint64 {
if len(c.str) == 34 && c.str[0] == 18 && c.str[1] == 32 {
return 0
}
return 1
}
// Type returns the multicodec-packed content type of a Cid.
func (c Cid) Type() uint64 {
if c.Version() == 0 {
return DagProtobuf
}
_, n, _ := uvarint(c.str)
codec, _, _ := uvarint(c.str[n:])
return codec
}
// String returns the default string representation of a
// Cid. Currently, Base32 is used for CIDV1 as the encoding for the
// multibase string, Base58 is used for CIDV0.
func (c Cid) String() string {
switch c.Version() {
case 0:
return c.Hash().B58String()
case 1:
mbstr, err := mbase.Encode(mbase.Base32, c.Bytes())
if err != nil {
panic("should not error with hardcoded mbase: " + err.Error())
}
return mbstr
default:
panic("not possible to reach this point")
}
}
// String returns the string representation of a Cid
// encoded is selected base
func (c Cid) StringOfBase(base mbase.Encoding) (string, error) {
switch c.Version() {
case 0:
if base != mbase.Base58BTC {
return "", ErrInvalidEncoding
}
return c.Hash().B58String(), nil
case 1:
return mbase.Encode(base, c.Bytes())
default:
panic("not possible to reach this point")
}
}
// Encode return the string representation of a Cid in a given base
// when applicable. Version 0 Cid's are always in Base58 as they do
// not take a multibase prefix.
func (c Cid) Encode(base mbase.Encoder) string {
switch c.Version() {
case 0:
return c.Hash().B58String()
case 1:
return base.Encode(c.Bytes())
default:
panic("not possible to reach this point")
}
}
// Hash returns the multihash contained by a Cid.
func (c Cid) Hash() mh.Multihash {
bytes := c.Bytes()
if c.Version() == 0 {
return mh.Multihash(bytes)
}
// skip version length
_, n1, _ := varint.FromUvarint(bytes)
// skip codec length
_, n2, _ := varint.FromUvarint(bytes[n1:])
return mh.Multihash(bytes[n1+n2:])
}
// Bytes returns the byte representation of a Cid.
// The output of bytes can be parsed back into a Cid
// with Cast().
func (c Cid) Bytes() []byte {
return []byte(c.str)
}
// ByteLen returns the length of the CID in bytes.
// It's equivalent to `len(c.Bytes())`, but works without an allocation,
// and should therefore be preferred.
//
// (See also the WriteTo method for other important operations that work without allocation.)
func (c Cid) ByteLen() int {
return len(c.str)
}
// WriteBytes writes the CID bytes to the given writer.
// This method works without incurring any allocation.
//
// (See also the ByteLen method for other important operations that work without allocation.)
func (c Cid) WriteBytes(w io.Writer) (int, error) {
n, err := io.WriteString(w, c.str)
if err != nil {
return n, err
}
if n != len(c.str) {
return n, fmt.Errorf("failed to write entire cid string")
}
return n, nil
}
// MarshalBinary is equivalent to Bytes(). It implements the
// encoding.BinaryMarshaler interface.
func (c Cid) MarshalBinary() ([]byte, error) {
return c.Bytes(), nil
}
// MarshalText is equivalent to String(). It implements the
// encoding.TextMarshaler interface.
func (c Cid) MarshalText() ([]byte, error) {
return []byte(c.String()), nil
}
// Equals checks that two Cids are the same.
// In order for two Cids to be considered equal, the
// Version, the Codec and the Multihash must match.
func (c Cid) Equals(o Cid) bool {
return c == o
}
// UnmarshalJSON parses the JSON representation of a Cid.
func (c *Cid) UnmarshalJSON(b []byte) error {
if len(b) < 2 {
return fmt.Errorf("invalid cid json blob")
}
obj := struct {
CidTarget string `json:"/"`
}{}
objptr := &obj
err := json.Unmarshal(b, &objptr)
if err != nil {
return err
}
if objptr == nil {
*c = Cid{}
return nil
}
if obj.CidTarget == "" {
return fmt.Errorf("cid was incorrectly formatted")
}
out, err := Decode(obj.CidTarget)
if err != nil {
return err
}
*c = out
return nil
}
// MarshalJSON procudes a JSON representation of a Cid, which looks as follows:
//
// { "/": "<cid-string>" }
//
// Note that this formatting comes from the IPLD specification
// (https://github.com/ipld/specs/tree/master/ipld)
func (c Cid) MarshalJSON() ([]byte, error) {
if !c.Defined() {
return []byte("null"), nil
}
return []byte(fmt.Sprintf("{\"/\":\"%s\"}", c.String())), nil
}
// KeyString returns the binary representation of the Cid as a string
func (c Cid) KeyString() string {
return c.str
}
// Loggable returns a Loggable (as defined by
// https://godoc.org/github.com/ipfs/go-log).
func (c Cid) Loggable() map[string]interface{} {
return map[string]interface{}{
"cid": c,
}
}
// Prefix builds and returns a Prefix out of a Cid.
func (c Cid) Prefix() Prefix {
if c.Version() == 0 {
return Prefix{
MhType: mh.SHA2_256,
MhLength: 32,
Version: 0,
Codec: DagProtobuf,
}
}
offset := 0
version, n, _ := uvarint(c.str[offset:])
offset += n
codec, n, _ := uvarint(c.str[offset:])
offset += n
mhtype, n, _ := uvarint(c.str[offset:])
offset += n
mhlen, _, _ := uvarint(c.str[offset:])
return Prefix{
MhType: mhtype,
MhLength: int(mhlen),
Version: version,
Codec: codec,
}
}
// Prefix represents all the metadata of a Cid,
// that is, the Version, the Codec, the Multihash type
// and the Multihash length. It does not contains
// any actual content information.
// NOTE: The use -1 in MhLength to mean default length is deprecated,
// use the V0Builder or V1Builder structures instead
type Prefix struct {
Version uint64
Codec uint64
MhType uint64
MhLength int
}
// Sum uses the information in a prefix to perform a multihash.Sum()
// and return a newly constructed Cid with the resulting multihash.
func (p Prefix) Sum(data []byte) (Cid, error) {
length := p.MhLength
if p.MhType == mh.ID {
length = -1
}
if p.Version == 0 && (p.MhType != mh.SHA2_256 ||
(p.MhLength != 32 && p.MhLength != -1)) {
return Undef, fmt.Errorf("invalid v0 prefix")
}
hash, err := mh.Sum(data, p.MhType, length)
if err != nil {
return Undef, err
}
switch p.Version {
case 0:
return NewCidV0(hash), nil
case 1:
return NewCidV1(p.Codec, hash), nil
default:
return Undef, fmt.Errorf("invalid cid version")
}
}
// Bytes returns a byte representation of a Prefix. It looks like:
//
// <version><codec><mh-type><mh-length>
func (p Prefix) Bytes() []byte {
size := varint.UvarintSize(p.Version)
size += varint.UvarintSize(p.Codec)
size += varint.UvarintSize(p.MhType)
size += varint.UvarintSize(uint64(p.MhLength))
buf := make([]byte, size)
n := varint.PutUvarint(buf, p.Version)
n += varint.PutUvarint(buf[n:], p.Codec)
n += varint.PutUvarint(buf[n:], p.MhType)
n += varint.PutUvarint(buf[n:], uint64(p.MhLength))
if n != size {
panic("size mismatch")
}
return buf
}
// PrefixFromBytes parses a Prefix-byte representation onto a
// Prefix.
func PrefixFromBytes(buf []byte) (Prefix, error) {
r := bytes.NewReader(buf)
vers, err := varint.ReadUvarint(r)
if err != nil {
return Prefix{}, err
}
codec, err := varint.ReadUvarint(r)
if err != nil {
return Prefix{}, err
}
mhtype, err := varint.ReadUvarint(r)
if err != nil {
return Prefix{}, err
}
mhlen, err := varint.ReadUvarint(r)
if err != nil {
return Prefix{}, err
}
return Prefix{
Version: vers,
Codec: codec,
MhType: mhtype,
MhLength: int(mhlen),
}, nil
}
func CidFromBytes(data []byte) (int, Cid, error) {
if len(data) > 2 && data[0] == mh.SHA2_256 && data[1] == 32 {
if len(data) < 34 {
return 0, Undef, fmt.Errorf("not enough bytes for cid v0")
}
h, err := mh.Cast(data[:34])
if err != nil {
return 0, Undef, err
}
return 34, Cid{string(h)}, nil
}
vers, n, err := varint.FromUvarint(data)
if err != nil {
return 0, Undef, err
}
if vers != 1 {
return 0, Undef, fmt.Errorf("expected 1 as the cid version number, got: %d", vers)
}
_, cn, err := varint.FromUvarint(data[n:])
if err != nil {
return 0, Undef, err
}
mhnr, _, err := mh.MHFromBytes(data[n+cn:])
if err != nil {
return 0, Undef, err
}
l := n + cn + mhnr
return l, Cid{string(data[0:l])}, nil
}
// +build gofuzz
package cid
func Fuzz(data []byte) int {
cid, err := Cast(data)
if err != nil {
return 0
}
_ = cid.Bytes()
_ = cid.String()
p := cid.Prefix()
_ = p.Bytes()
if !cid.Equals(cid) {
panic("inequality")
}
// json loop
json, err := cid.MarshalJSON()
if err != nil {
panic(err.Error())
}
cid2 := Cid{}
err = cid2.UnmarshalJSON(json)
if err != nil {
panic(err.Error())
}
if !cid.Equals(cid2) {
panic("json loop not equal")
}
return 1
}
package cid
import (
"bytes"
"encoding/json"
"fmt"
"math/rand"
"reflect"
"strings"
"testing"
mbase "github.com/multiformats/go-multibase"
mh "github.com/multiformats/go-multihash"
)
// Copying the "silly test" idea from
// https://github.com/multiformats/go-multihash/blob/7aa9f26a231c6f34f4e9fad52bf580fd36627285/multihash_test.go#L13
// Makes it so changing the table accidentally has to happen twice.
var tCodecs = map[uint64]string{
Raw: "raw",
DagProtobuf: "protobuf",
DagCBOR: "cbor",
Libp2pKey: "libp2p-key",
GitRaw: "git-raw",
EthBlock: "eth-block",
EthBlockList: "eth-block-list",
EthTxTrie: "eth-tx-trie",
EthTx: "eth-tx",
EthTxReceiptTrie: "eth-tx-receipt-trie",
EthTxReceipt: "eth-tx-receipt",
EthStateTrie: "eth-state-trie",
EthAccountSnapshot: "eth-account-snapshot",
EthStorageTrie: "eth-storage-trie",
BitcoinBlock: "bitcoin-block",
BitcoinTx: "bitcoin-tx",
ZcashBlock: "zcash-block",
ZcashTx: "zcash-tx",
DecredBlock: "decred-block",
DecredTx: "decred-tx",
DashBlock: "dash-block",
DashTx: "dash-tx",
FilCommitmentUnsealed: "fil-commitment-unsealed",
FilCommitmentSealed: "fil-commitment-sealed",
DagJOSE: "dag-jose",
}
func assertEqual(t *testing.T, a, b Cid) {
if a.Type() != b.Type() {
t.Fatal("mismatch on type")
}
if a.Version() != b.Version() {
t.Fatal("mismatch on version")
}
if !bytes.Equal(a.Hash(), b.Hash()) {
t.Fatal("multihash mismatch")
}
}
func TestTable(t *testing.T) {
if len(tCodecs) != len(Codecs)-1 {
t.Errorf("Item count mismatch in the Table of Codec. Should be %d, got %d", len(tCodecs)+1, len(Codecs))
}
for k, v := range tCodecs {
if Codecs[v] != k {
t.Errorf("Table mismatch: 0x%x %s", k, v)
}
}
}
// The table returns cid.DagProtobuf for "v0"
// so we test it apart
func TestTableForV0(t *testing.T) {
if Codecs["v0"] != DagProtobuf {
t.Error("Table mismatch: Codecs[\"v0\"] should resolve to DagProtobuf (0x70)")
}
}
func TestPrefixSum(t *testing.T) {
// Test creating CIDs both manually and with Prefix.
// Tests: https://github.com/ipfs/go-cid/issues/83
for _, hashfun := range []uint64{
mh.ID, mh.SHA3, mh.SHA2_256,
} {
h1, err := mh.Sum([]byte("TEST"), hashfun, -1)
if err != nil {
t.Fatal(err)
}
c1 := NewCidV1(Raw, h1)
h2, err := mh.Sum([]byte("foobar"), hashfun, -1)
if err != nil {
t.Fatal(err)
}
c2 := NewCidV1(Raw, h2)
c3, err := c1.Prefix().Sum([]byte("foobar"))
if err != nil {
t.Fatal(err)
}
if !c2.Equals(c3) {
t.Fatal("expected CIDs to be equal")
}
}
}
func TestBasicMarshaling(t *testing.T) {
h, err := mh.Sum([]byte("TEST"), mh.SHA3, 4)
if err != nil {
t.Fatal(err)
}
cid := NewCidV1(7, h)
data := cid.Bytes()
out, err := Cast(data)
if err != nil {
t.Fatal(err)
}
assertEqual(t, cid, out)
s := cid.String()
out2, err := Decode(s)
if err != nil {
t.Fatal(err)
}
assertEqual(t, cid, out2)
}
func TestBasesMarshaling(t *testing.T) {
h, err := mh.Sum([]byte("TEST"), mh.SHA3, 4)
if err != nil {
t.Fatal(err)
}
cid := NewCidV1(7, h)
data := cid.Bytes()
out, err := Cast(data)
if err != nil {
t.Fatal(err)
}
assertEqual(t, cid, out)
testBases := []mbase.Encoding{
mbase.Base16,
mbase.Base32,
mbase.Base32hex,
mbase.Base32pad,
mbase.Base32hexPad,
mbase.Base58BTC,
mbase.Base58Flickr,
mbase.Base64pad,
mbase.Base64urlPad,
mbase.Base64url,
mbase.Base64,
}
for _, b := range testBases {
s, err := cid.StringOfBase(b)
if err != nil {
t.Fatal(err)
}
if s[0] != byte(b) {
t.Fatal("Invalid multibase header")
}
out2, err := Decode(s)
if err != nil {
t.Fatal(err)
}
assertEqual(t, cid, out2)
encoder, err := mbase.NewEncoder(b)
if err != nil {
t.Fatal(err)
}
s2 := cid.Encode(encoder)
if s != s2 {
t.Fatalf("%q != %q", s, s2)
}
ee, err := ExtractEncoding(s)
if err != nil {
t.Fatal(err)
}
if ee != b {
t.Fatalf("could not properly determine base (got %v)", ee)
}
}
ee, err := ExtractEncoding("QmdfTbBqBPQ7VNxZEYEj14VmRuZBkqFbiwReogJgS1zR1n")
if err != nil {
t.Fatal(err)
}
if ee != mbase.Base58BTC {
t.Fatalf("expected Base58BTC from Qm string (got %v)", ee)
}
ee, err = ExtractEncoding("1")
if err == nil {
t.Fatal("expected too-short error from ExtractEncoding")
}
if ee != -1 {
t.Fatal("expected -1 from too-short ExtractEncoding")
}
}
func TestBinaryMarshaling(t *testing.T) {
data := []byte("this is some test content")
hash, _ := mh.Sum(data, mh.SHA2_256, -1)
c := NewCidV1(DagCBOR, hash)
var c2 Cid
var c3 Cid
data, err := c.MarshalBinary()
if err != nil {
t.Fatal(err)
}
if err = c2.UnmarshalBinary(data); err != nil {
t.Fatal(err)
}
if !c.Equals(c2) {
t.Errorf("cids should be the same: %s %s", c, c2)
}
var buf bytes.Buffer
wrote, err := c.WriteBytes(&buf)
if err != nil {
t.Fatal(err)
}
if wrote != 36 {
t.Fatalf("expected 36 bytes written (got %d)", wrote)
}
if err = c3.UnmarshalBinary(data); err != nil {
t.Fatal(err)
}
if !c.Equals(c3) {
t.Errorf("cids should be the same: %s %s", c, c3)
}
}
func TestTextMarshaling(t *testing.T) {
data := []byte("this is some test content")
hash, _ := mh.Sum(data, mh.SHA2_256, -1)
c := NewCidV1(DagCBOR, hash)
var c2 Cid
data, err := c.MarshalText()
if err != nil {
t.Fatal(err)
}
if err = c2.UnmarshalText(data); err != nil {
t.Fatal(err)
}
if !c.Equals(c2) {
t.Errorf("cids should be the same: %s %s", c, c2)
}
if c.KeyString() != string(c.Bytes()) {
t.Errorf("got unexpected KeyString() result")
}
}
func TestEmptyString(t *testing.T) {
_, err := Decode("")
if err == nil {
t.Fatal("shouldnt be able to parse an empty cid")
}
}
func TestV0Handling(t *testing.T) {
old := "QmdfTbBqBPQ7VNxZEYEj14VmRuZBkqFbiwReogJgS1zR1n"
cid, err := Decode(old)
if err != nil {
t.Fatal(err)
}
if cid.Version() != 0 {
t.Fatal("should have gotten version 0 cid")
}
if cid.Hash().B58String() != old {
t.Fatalf("marshaling roundtrip failed: %s != %s", cid.Hash().B58String(), old)
}
if cid.String() != old {
t.Fatal("marshaling roundtrip failed")
}
byteLen := cid.ByteLen()
if byteLen != 34 {
t.Fatalf("expected V0 ByteLen to be 34 (got %d)", byteLen)
}
new, err := cid.StringOfBase(mbase.Base58BTC)
if err != nil {
t.Fatal(err)
}
if new != old {
t.Fatal("StringOfBase roundtrip failed")
}
encoder, err := mbase.NewEncoder(mbase.Base58BTC)
if err != nil {
t.Fatal(err)
}
if cid.Encode(encoder) != old {
t.Fatal("Encode roundtrip failed")
}
_, err = cid.StringOfBase(mbase.Base32)
if err != ErrInvalidEncoding {
t.Fatalf("expected ErrInvalidEncoding for V0 StringOfBase(Base32) (got %v)", err)
}
}
func TestV0ErrorCases(t *testing.T) {
badb58 := "QmdfTbBqBPQ7VNxZEYEj14VmRuZBkqFbiwReogJgS1zIII"
_, err := Decode(badb58)
if err == nil {
t.Fatal("should have failed to decode that ref")
}
}
func TestNewPrefixV1(t *testing.T) {
data := []byte("this is some test content")
// Construct c1
prefix := NewPrefixV1(DagCBOR, mh.SHA2_256)
c1, err := prefix.Sum(data)
if err != nil {
t.Fatal(err)
}
if c1.Prefix() != prefix {
t.Fatal("prefix not preserved")
}
// Construct c2
hash, err := mh.Sum(data, mh.SHA2_256, -1)
if err != nil {
t.Fatal(err)
}
c2 := NewCidV1(DagCBOR, hash)
if !c1.Equals(c2) {
t.Fatal("cids mismatch")
}
if c1.Prefix() != c2.Prefix() {
t.Fatal("prefixes mismatch")
}
}
func TestNewPrefixV0(t *testing.T) {
data := []byte("this is some test content")
// Construct c1
prefix := NewPrefixV0(mh.SHA2_256)
c1, err := prefix.Sum(data)
if err != nil {
t.Fatal(err)
}
if c1.Prefix() != prefix {
t.Fatal("prefix not preserved")
}
// Construct c2
hash, err := mh.Sum(data, mh.SHA2_256, -1)
if err != nil {
t.Fatal(err)
}
c2 := NewCidV0(hash)
if !c1.Equals(c2) {
t.Fatal("cids mismatch")
}
if c1.Prefix() != c2.Prefix() {
t.Fatal("prefixes mismatch")
}
}
func TestInvalidV0Prefix(t *testing.T) {
tests := []Prefix{
{
MhType: mh.SHA2_256,
MhLength: 31,
},
{
MhType: mh.SHA2_256,
MhLength: 33,
},
{
MhType: mh.SHA2_256,
MhLength: -2,
},
{
MhType: mh.SHA2_512,
MhLength: 32,
},
{
MhType: mh.SHA2_512,
MhLength: -1,
},
}
for i, p := range tests {
t.Log(i)
_, err := p.Sum([]byte("testdata"))
if err == nil {
t.Fatalf("should error (index %d)", i)
}
}
}
func TestBadPrefix(t *testing.T) {
p := Prefix{Version: 3, Codec: DagProtobuf, MhType: mh.SHA2_256, MhLength: 3}
_, err := p.Sum([]byte{0x00, 0x01, 0x03})
if err == nil {
t.Fatalf("expected error on v3 prefix Sum")
}
}
func TestPrefixRoundtrip(t *testing.T) {
data := []byte("this is some test content")
hash, _ := mh.Sum(data, mh.SHA2_256, -1)
c := NewCidV1(DagCBOR, hash)
pref := c.Prefix()
c2, err := pref.Sum(data)
if err != nil {
t.Fatal(err)
}
if !c.Equals(c2) {
t.Fatal("output didnt match original")
}
pb := pref.Bytes()
pref2, err := PrefixFromBytes(pb)
if err != nil {
t.Fatal(err)
}
if pref.Version != pref2.Version || pref.Codec != pref2.Codec ||
pref.MhType != pref2.MhType || pref.MhLength != pref2.MhLength {
t.Fatal("input prefix didnt match output")
}
}
func TestBadPrefixFromBytes(t *testing.T) {
_, err := PrefixFromBytes([]byte{0x80})
if err == nil {
t.Fatal("expected error for bad byte 0")
}
_, err = PrefixFromBytes([]byte{0x01, 0x80})
if err == nil {
t.Fatal("expected error for bad byte 1")
}
_, err = PrefixFromBytes([]byte{0x01, 0x01, 0x80})
if err == nil {
t.Fatal("expected error for bad byte 2")
}
_, err = PrefixFromBytes([]byte{0x01, 0x01, 0x01, 0x80})
if err == nil {
t.Fatal("expected error for bad byte 3")
}
}
func Test16BytesVarint(t *testing.T) {
data := []byte("this is some test content")
hash, _ := mh.Sum(data, mh.SHA2_256, -1)
c := NewCidV1(1<<63, hash)
_ = c.Bytes()
}
func TestFuzzCid(t *testing.T) {
buf := make([]byte, 128)
for i := 0; i < 200; i++ {
s := rand.Intn(128)
rand.Read(buf[:s])
_, _ = Cast(buf[:s])
}
}
func TestParse(t *testing.T) {
cid, err := Parse(123)
if err == nil {
t.Fatalf("expected error from Parse()")
}
if !strings.Contains(err.Error(), "can't parse 123 as Cid") {
t.Fatalf("expected int error, got %s", err.Error())
}
theHash := "QmdfTbBqBPQ7VNxZEYEj14VmRuZBkqFbiwReogJgS1zR1n"
h, err := mh.FromB58String(theHash)
if err != nil {
t.Fatal(err)
}
assertions := [][]interface{}{
[]interface{}{NewCidV0(h), theHash},
[]interface{}{NewCidV0(h).Bytes(), theHash},
[]interface{}{h, theHash},
[]interface{}{theHash, theHash},
[]interface{}{"/ipfs/" + theHash, theHash},
[]interface{}{"https://ipfs.io/ipfs/" + theHash, theHash},
[]interface{}{"http://localhost:8080/ipfs/" + theHash, theHash},
}
assert := func(arg interface{}, expected string) error {
cid, err = Parse(arg)
if err != nil {
return err
}
if cid.Version() != 0 {
return fmt.Errorf("expected version 0, got %d", cid.Version())
}
actual := cid.Hash().B58String()
if actual != expected {
return fmt.Errorf("expected hash %s, got %s", expected, actual)
}
actual = cid.String()
if actual != expected {
return fmt.Errorf("expected string %s, got %s", expected, actual)
}
return nil
}
for _, args := range assertions {
if err := assert(args[0], args[1].(string)); err != nil {
t.Fatal(err)
}
}
}
func TestHexDecode(t *testing.T) {
hexcid := "f015512209d8453505bdc6f269678e16b3e56c2a2948a41f2c792617cc9611ed363c95b63"
c, err := Decode(hexcid)
if err != nil {
t.Fatal(err)
}
if c.String() != "bafkreie5qrjvaw64n4tjm6hbnm7fnqvcssfed4whsjqxzslbd3jwhsk3mm" {
t.Fatal("hash value failed to round trip decoding from hex")
}
}
func ExampleDecode() {
encoded := "bafkreie5qrjvaw64n4tjm6hbnm7fnqvcssfed4whsjqxzslbd3jwhsk3mm"
c, err := Decode(encoded)
if err != nil {
fmt.Printf("Error: %s", err)
return
}
fmt.Println(c)
// Output: bafkreie5qrjvaw64n4tjm6hbnm7fnqvcssfed4whsjqxzslbd3jwhsk3mm
}
func TestFromJson(t *testing.T) {
cval := "bafkreie5qrjvaw64n4tjm6hbnm7fnqvcssfed4whsjqxzslbd3jwhsk3mm"
jsoncid := []byte(`{"/":"` + cval + `"}`)
var c Cid
if err := json.Unmarshal(jsoncid, &c); err != nil {
t.Fatal(err)
}
if c.String() != cval {
t.Fatal("json parsing failed")
}
}
func TestJsonRoundTrip(t *testing.T) {
expectedJSON := `{"/":"bafkreie5qrjvaw64n4tjm6hbnm7fnqvcssfed4whsjqxzslbd3jwhsk3mm"}`
exp, err := Decode("bafkreie5qrjvaw64n4tjm6hbnm7fnqvcssfed4whsjqxzslbd3jwhsk3mm")
if err != nil {
t.Fatal(err)
}
// Verify it works for a *Cid.
enc, err := json.Marshal(exp)
if err != nil {
t.Fatal(err)
}
var actual Cid
if err = json.Unmarshal(enc, &actual); err != nil {
t.Fatal(err)
}
if !exp.Equals(actual) {
t.Fatal("cids not equal for *Cid")
}
if string(enc) != expectedJSON {
t.Fatalf("did not get expected JSON form (got %q)", string(enc))
}
// Verify it works for a Cid.
enc, err = json.Marshal(exp)
if err != nil {
t.Fatal(err)
}
var actual2 Cid
if err = json.Unmarshal(enc, &actual2); err != nil {
t.Fatal(err)
}
if !exp.Equals(actual2) {
t.Fatal("cids not equal for Cid")
}
if err = actual2.UnmarshalJSON([]byte("1")); err == nil {
t.Fatal("expected error for too-short JSON")
}
if err = actual2.UnmarshalJSON([]byte(`{"nope":"nope"}`)); err == nil {
t.Fatal("expected error for bad CID JSON")
}
if err = actual2.UnmarshalJSON([]byte(`bad "" json!`)); err == nil {
t.Fatal("expected error for bad JSON")
}
var actual3 Cid
enc, err = actual3.MarshalJSON()
if err != nil {
t.Fatal(err)
}
if string(enc) != "null" {
t.Fatalf("expected 'null' string for undefined CID (got %q)", string(enc))
}
}
func BenchmarkStringV1(b *testing.B) {
data := []byte("this is some test content")
hash, _ := mh.Sum(data, mh.SHA2_256, -1)
cid := NewCidV1(Raw, hash)
b.ReportAllocs()
b.ResetTimer()
count := 0
for i := 0; i < b.N; i++ {
count += len(cid.String())
}
if count != 49*b.N {
b.FailNow()
}
}
func TestReadCidsFromBuffer(t *testing.T) {
cidstr := []string{
"bafkreie5qrjvaw64n4tjm6hbnm7fnqvcssfed4whsjqxzslbd3jwhsk3mm",
"k2cwueckqkibutvhkr4p2ln2pjcaxaakpd9db0e7j7ax1lxhhxy3ekpv",
"Qmf5Qzp6nGBku7CEn2UQx4mgN8TW69YUok36DrGa6NN893",
"zb2rhZi1JR4eNc2jBGaRYJKYM8JEB4ovenym8L1CmFsRAytkz",
}
var cids []Cid
var buf []byte
for _, cs := range cidstr {
c, err := Decode(cs)
if err != nil {
t.Fatal(err)
}
cids = append(cids, c)
buf = append(buf, c.Bytes()...)
}
var cur int
for _, expc := range cids {
n, c, err := CidFromBytes(buf[cur:])
if err != nil {
t.Fatal(err)
}
if c != expc {
t.Fatal("cids mismatched")
}
cur += n
}
if cur != len(buf) {
t.Fatal("had trailing bytes")
}
}
func TestBadCidFromBytes(t *testing.T) {
l, c, err := CidFromBytes([]byte{mh.SHA2_256, 32, 0x00})
if err == nil {
t.Fatal("expected not-enough-bytes for V0 CidFromBytes")
}
if l != 0 {
t.Fatal("expected length=0 from bad CidFromBytes")
}
if c != Undef {
t.Fatal("expected Undef CID from bad CidFromBytes")
}
c, err = Decode("bafkreie5qrjvaw64n4tjm6hbnm7fnqvcssfed4whsjqxzslbd3jwhsk3mm")
if err != nil {
t.Fatal(err)
}
byts := make([]byte, c.ByteLen())
copy(byts, c.Bytes())
byts[1] = 0x80 // bad codec varint
byts[2] = 0x00
l, c, err = CidFromBytes(byts)
if err == nil {
t.Fatal("expected not-enough-bytes for V1 CidFromBytes")
}
if l != 0 {
t.Fatal("expected length=0 from bad CidFromBytes")
}
if c != Undef {
t.Fatal("expected Undef CID from bad CidFromBytes")
}
copy(byts, c.Bytes())
byts[2] = 0x80 // bad multihash varint
byts[3] = 0x00
l, c, err = CidFromBytes(byts)
if err == nil {
t.Fatal("expected not-enough-bytes for V1 CidFromBytes")
}
if l != 0 {
t.Fatal("expected length=0 from bad CidFromBytes")
}
if c != Undef {
t.Fatal("expected Undef CID from bad CidFromBytes")
}
}
func TestBadParse(t *testing.T) {
hash, err := mh.Sum([]byte("foobar"), mh.SHA3_256, -1)
if err != nil {
t.Fatal(err)
}
_, err = Parse(hash)
if err == nil {
t.Fatal("expected to fail to parse an invalid CIDv1 CID")
}
}
func TestLoggable(t *testing.T) {
c, err := Decode("bafkreie5qrjvaw64n4tjm6hbnm7fnqvcssfed4whsjqxzslbd3jwhsk3mm")
if err != nil {
t.Fatal(err)
}
actual := c.Loggable()
expected := make(map[string]interface{})
expected["cid"] = c
if !reflect.DeepEqual(actual, expected) {
t.Fatalf("did not get expected loggable form (got %v)", actual)
}
}
coverage:
range: "50...100"
comment: off
package cid
import (
mh "github.com/multiformats/go-multihash"
)
// NewPrefixV0 returns a CIDv0 prefix with the specified multihash type.
// DEPRECATED: Use V0Builder
func NewPrefixV0(mhType uint64) Prefix {
return Prefix{
MhType: mhType,
MhLength: mh.DefaultLengths[mhType],
Version: 0,
Codec: DagProtobuf,
}
}
// NewPrefixV1 returns a CIDv1 prefix with the specified codec and multihash
// type.
// DEPRECATED: Use V1Builder
func NewPrefixV1(codecType uint64, mhType uint64) Prefix {
return Prefix{
MhType: mhType,
MhLength: mh.DefaultLengths[mhType],
Version: 1,
Codec: codecType,
}
}
 gD1e-D/q3~(7`8n
\ No newline at end of file
q -[ïh[ (ΰ[)D
\ No newline at end of file
github.com/minio/blake2b-simd v0.0.0-20160723061019-3f5f724cb5b1 h1:lYpkrQH5ajf0OXOcUbGjvZxxijuBwbbmlSxLiuofa+g=
github.com/minio/blake2b-simd v0.0.0-20160723061019-3f5f724cb5b1/go.mod h1:pD8RvIylQ358TN4wwqatJ8rNavkEINozVn9DtGI3dfQ=
github.com/minio/sha256-simd v0.1.1-0.20190913151208-6de447530771 h1:MHkK1uRtFbVqvAgvWxafZe54+5uBxLluGylDiKgdhwo=
github.com/minio/sha256-simd v0.1.1-0.20190913151208-6de447530771/go.mod h1:B5e1o+1/KgNmWrSQK08Y6Z1Vb5pwIktudl0J58iy0KM=
github.com/mr-tron/base58 v1.1.0 h1:Y51FGVJ91WBqCEabAi5OPUz38eAx8DakuAm5svLcsfQ=
github.com/mr-tron/base58 v1.1.0/go.mod h1:xcD2VGqlgYjBdcBLw+TuYLr8afG+Hj8g2eTVqeSzSU8=
github.com/mr-tron/base58 v1.1.3 h1:v+sk57XuaCKGXpWtVBX8YJzO7hMGx4Aajh4TQbdEFdc=
github.com/mr-tron/base58 v1.1.3/go.mod h1:BinMc/sQntlIE1frQmRFPUoPA1Zkr8VRgBdjWI2mNwc=
github.com/multiformats/go-base32 v0.0.3 h1:tw5+NhuwaOjJCC5Pp82QuXbrmLzWg7uxlMFp8Nq/kkI=
github.com/multiformats/go-base32 v0.0.3/go.mod h1:pLiuGC8y0QR3Ue4Zug5UzK9LjgbkL8NSQj0zQ5Nz/AA=
github.com/multiformats/go-base36 v0.1.0 h1:JR6TyF7JjGd3m6FbLU2cOxhC0Li8z8dLNGQ89tUg4F4=
github.com/multiformats/go-base36 v0.1.0/go.mod h1:kFGE83c6s80PklsHO9sRn2NCoffoRdUUOENyW/Vv6sM=
github.com/multiformats/go-multibase v0.0.3 h1:l/B6bJDQjvQ5G52jw4QGSYeOTZoAwIO77RblWplfIqk=
github.com/multiformats/go-multibase v0.0.3/go.mod h1:5+1R4eQrT3PkYZ24C3W2Ue2tPwIdYQD509ZjSb5y9Oc=
github.com/multiformats/go-multihash v0.0.13 h1:06x+mk/zj1FoMsgNejLpy6QTvJqlSt/BhLEy87zidlc=
github.com/multiformats/go-multihash v0.0.13/go.mod h1:VdAWLKTwram9oKAatUcLxBNUjdtcVwxObEQBtRfuyjc=
github.com/multiformats/go-multihash v0.0.14/go.mod h1:VdAWLKTwram9oKAatUcLxBNUjdtcVwxObEQBtRfuyjc=
github.com/multiformats/go-varint v0.0.5 h1:XVZwSo04Cs3j/jS0uAEPpT3JY6DzMcVLLoWOSnCxOjg=
github.com/multiformats/go-varint v0.0.5/go.mod h1:3Ls8CIEsrijN6+B7PbrXRPxHRPuXSrVKRY101jdMZYE=
github.com/multiformats/go-varint v0.0.6/go.mod h1:3Ls8CIEsrijN6+B7PbrXRPxHRPuXSrVKRY101jdMZYE=
github.com/spaolacci/murmur3 v1.1.0 h1:7c1g84S4BPRrfL5Xrdp6fOJ206sU9y293DDHaoy0bLI=
github.com/spaolacci/murmur3 v1.1.0/go.mod h1:JwIasOWyU6f++ZhiEuf87xNszmSA2myDM2Kzu9HwQUA=
golang.org/x/crypto v0.0.0-20190308221718-c2843e01d9a2/go.mod h1:djNgcEr1/C05ACkg1iLfiJU5Ep61QUkGW8qpdssI0+w=
golang.org/x/crypto v0.0.0-20190611184440-5c40567a22f8 h1:1wopBVtVdWnn03fZelqdXTqk7U7zPQCb+T4rbU9ZEoU=
golang.org/x/crypto v0.0.0-20190611184440-5c40567a22f8/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
golang.org/x/net v0.0.0-20190404232315-eb5bcb51f2a3/go.mod h1:t9HGtf8HONx5eT2rtn7q6eTqICYqUVnKs3thJo3Qplg=
golang.org/x/sys v0.0.0-20190215142949-d0b11bdaac8a/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20190412213103-97732733099d h1:+R4KGOnez64A81RvjARKc4UT5/tI9ujCIVX+P5KiHuI=
golang.org/x/sys v0.0.0-20190412213103-97732733099d/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
package cid
// Set is a implementation of a set of Cids, that is, a structure
// to which holds a single copy of every Cids that is added to it.
type Set struct {
set map[Cid]struct{}
}
// NewSet initializes and returns a new Set.
func NewSet() *Set {
return &Set{set: make(map[Cid]struct{})}
}
// Add puts a Cid in the Set.
func (s *Set) Add(c Cid) {
s.set[c] = struct{}{}
}
// Has returns if the Set contains a given Cid.
func (s *Set) Has(c Cid) bool {
_, ok := s.set[c]
return ok
}
// Remove deletes a Cid from the Set.
func (s *Set) Remove(c Cid) {
delete(s.set, c)
}
// Len returns how many elements the Set has.
func (s *Set) Len() int {
return len(s.set)
}
// Keys returns the Cids in the set.
func (s *Set) Keys() []Cid {
out := make([]Cid, 0, len(s.set))
for k := range s.set {
out = append(out, k)
}
return out
}
// Visit adds a Cid to the set only if it is
// not in it already.
func (s *Set) Visit(c Cid) bool {
if !s.Has(c) {
s.Add(c)
return true
}
return false
}
// ForEach allows to run a custom function on each
// Cid in the set.
func (s *Set) ForEach(f func(c Cid) error) error {
for c := range s.set {
err := f(c)
if err != nil {
return err
}
}
return nil
}
package cid
import (
"crypto/rand"
"errors"
"testing"
mh "github.com/multiformats/go-multihash"
)
func makeRandomCid(t *testing.T) Cid {
p := make([]byte, 256)
_, err := rand.Read(p)
if err != nil {
t.Fatal(err)
}
h, err := mh.Sum(p, mh.SHA3, 4)
if err != nil {
t.Fatal(err)
}
cid := NewCidV1(7, h)
return cid
}
func TestSet(t *testing.T) {
cid := makeRandomCid(t)
cid2 := makeRandomCid(t)
s := NewSet()
s.Add(cid)
if !s.Has(cid) {
t.Error("should have the CID")
}
if s.Len() != 1 {
t.Error("should report 1 element")
}
keys := s.Keys()
if len(keys) != 1 || !keys[0].Equals(cid) {
t.Error("key should correspond to Cid")
}
if s.Visit(cid) {
t.Error("visit should return false")
}
foreach := []Cid{}
foreachF := func(c Cid) error {
foreach = append(foreach, c)
return nil
}
if err := s.ForEach(foreachF); err != nil {
t.Error(err)
}
if len(foreach) != 1 {
t.Error("ForEach should have visited 1 element")
}
foreachErr := func(c Cid) error {
return errors.New("test")
}
if err := s.ForEach(foreachErr); err == nil {
t.Error("Should have returned an error")
}
if !s.Visit(cid2) {
t.Error("should have visited a new Cid")
}
if s.Len() != 2 {
t.Error("len should be 2 now")
}
s.Remove(cid2)
if s.Len() != 1 {
t.Error("len should be 1 now")
}
}
package cid
import (
"github.com/multiformats/go-varint"
)
// Version of varint function that works with a string rather than
// []byte to avoid unnecessary allocation
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license as given at https://golang.org/LICENSE
// uvarint decodes a uint64 from buf and returns that value and the
// number of bytes read (> 0). If an error occurred, then 0 is
// returned for both the value and the number of bytes read, and an
// error is returned.
func uvarint(buf string) (uint64, int, error) {
var x uint64
var s uint
// we have a binary string so we can't use a range loop
for i := 0; i < len(buf); i++ {
b := buf[i]
if b < 0x80 {
if i > 9 || i == 9 && b > 1 {
return 0, 0, varint.ErrOverflow
}
if b == 0 && i > 0 {
return 0, 0, varint.ErrNotMinimal
}
return x | uint64(b)<<s, i + 1, nil
}
x |= uint64(b&0x7f) << s
s += 7
}
return 0, 0, varint.ErrUnderflow
}
package cid
import (
"testing"
"github.com/multiformats/go-varint"
)
func TestUvarintRoundTrip(t *testing.T) {
testCases := []uint64{0, 1, 2, 127, 128, 129, 255, 256, 257, 1<<63 - 1}
for _, tc := range testCases {
t.Log("testing", tc)
buf := make([]byte, 16)
varint.PutUvarint(buf, tc)
v, l1, err := uvarint(string(buf))
if err != nil {
t.Fatalf("%v: %s", buf, err)
}
_, l2, err := varint.FromUvarint(buf)
if err != nil {
t.Fatal(err)
}
if tc != v {
t.Errorf("roundtrip failed expected %d but got %d", tc, v)
}
if l1 != l2 {
t.Errorf("length incorrect expected %d but got %d", l2, l1)
}
}
}
func TestUvarintEdges(t *testing.T) {
tests := []struct {
name string
input []byte
want error
}{
{"ErrNotMinimal", []byte{0x01 | 0x80, 0}, varint.ErrNotMinimal},
{"ErrOverflow", []byte{0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x01}, varint.ErrOverflow},
{"ErrUnderflow", []byte{0x80}, varint.ErrUnderflow},
}
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
v, l1, err := uvarint(string(test.input))
if err != test.want {
t.Fatalf("error case (%v) should return varint.%s (got: %v)", test.input, test.name, err)
}
if v != 0 {
t.Fatalf("error case (%v) should return 0 value (got %d)", test.input, v)
}
if l1 != 0 {
t.Fatalf("error case (%v) should return 0 length (got %d)", test.input, l1)
}
})
}
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment