reflect.go 9.12 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
package fluent

import (
	"fmt"
	"reflect"
	"sort"

	"github.com/ipld/go-ipld-prime"
)

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
// Reflect creates a new Node by looking at a golang value with reflection
// and converting it into IPLD Data Model.
// This is a quick-and-dirty way to get data into the IPLD Data Model;
// it's useful for rapid prototyping and demos,
// but note that this feature is not intended to be suitable for "production" use
// due to low performance and lack of configurability.
//
// The concrete type of the returned Node is determined by
// the NodePrototype argument provided by the caller.
//
// No type information from the golang value will be observable in the result.
//
// The reflection will walk over any golang value, but is not configurable.
// Golang maps become IPLD maps; golang slices and arrays become IPLD lists;
// and golang structs become IPLD maps too.
// When converting golang structs to IPLD maps, the field names will become the map keys.
// Pointers and interfaces will be traversed transparently and are not visible in the output.
//
// An error will be returned if the process of assembling the Node returns any errors
// (for example, if the NodePrototype is for a schema-constrained Node,
// any validation errors from the schema will cause errors to be returned).
//
// A panic will be raised if there is any difficulty examining the golang value via reflection
// (for example, if the value is a struct with unexported fields,
// or if a non-data type like a channel or function is encountered).
//
// Some configuration (in particular, what to do about map ordering) is available via the Reflector struct.
// That structure has a method of the same name and signiture as this one on it.
// (This function is a shortcut for calling that method on a Reflector struct with default configuration.)
//
// Performance remarks: performance of this function will generally be poor.
// In general, creating data in golang types and then *flipping* it to IPLD form
// involves handling the data at least twice, and so will always be slower
// than just creating the same data in IPLD form programmatically directly.
// In particular, reflection is generally not fast, and this feature has
// not been optimized for either speed nor allocation avoidance.
// Other features in the fluent package will typically out-perform this,
// and using NodeAssemblers directly (without any fluent tools) will be much faster.
// Only use this function if performance is not of consequence.
50 51 52 53
func Reflect(np ipld.NodePrototype, i interface{}) (ipld.Node, error) {
	return defaultReflector.Reflect(np, i)
}

54 55 56 57 58
// ReflectIntoAssembler is similar to Reflect, but takes a NodeAssembler parameter
// instead of a Node Prototype.
// This may be useful if you need more direct control over allocations,
// or want to fill in only part of a larger node assembly process using the reflect tool.
// Data is accumulated by the NodeAssembler parameter, so no Node is returned.
59 60 61 62 63 64 65 66 67 68
func ReflectIntoAssembler(na ipld.NodeAssembler, i interface{}) error {
	return defaultReflector.ReflectIntoAssembler(na, i)
}

var defaultReflector = Reflector{
	MapOrder: func(x, y string) bool {
		return x < y
	},
}

69 70
// Reflector allows configuration of the Reflect family of functions
// (`Reflect`, `ReflectIntoAssembler`, etc).
71 72 73 74 75
type Reflector struct {
	// MapOrder is used to decide a deterministic order for inserting entries to maps.
	// (This is used when converting golang maps, since their iteration order is randomized;
	// it is not used when converting other types such as structs, since those have a stable order.)
	// MapOrder should return x < y in the same way as sort.Interface.Less.
76 77 78
	//
	// If using a default Reflector (e.g. via the package-scope functions),
	// this function is a simple natural golang string sort: it performs `x < y` on the strings.
79 80 81
	MapOrder func(x, y string) bool
}

82 83 84
// Reflect is as per the package-scope function of the same name and signature,
// but using the configuration in the Reflector struct.
// See the package-scope function for documentation.
85 86 87 88 89 90 91 92
func (rcfg Reflector) Reflect(np ipld.NodePrototype, i interface{}) (ipld.Node, error) {
	nb := np.NewBuilder()
	if err := rcfg.ReflectIntoAssembler(nb, i); err != nil {
		return nil, err
	}
	return nb.Build(), nil
}

93 94 95
// ReflectIntoAssembler is as per the package-scope function of the same name and signature,
// but using the configuration in the Reflector struct.
// See the package-scope function for documentation.
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
func (rcfg Reflector) ReflectIntoAssembler(na ipld.NodeAssembler, i interface{}) error {
	// Cover the most common values with a type-switch, as it's faster than reflection.
	switch x := i.(type) {
	case map[string]string:
		keys := make([]string, 0, len(x))
		for k := range x {
			keys = append(keys, k)
		}
		sort.Sort(sortableStrings{keys, rcfg.MapOrder})
		ma, err := na.BeginMap(len(x))
		if err != nil {
			return err
		}
		for _, k := range keys {
			va, err := ma.AssembleEntry(k)
			if err != nil {
				return err
			}
			if err := va.AssignString(x[k]); err != nil {
				return err
			}
		}
		return ma.Finish()
	case map[string]interface{}:
		keys := make([]string, 0, len(x))
		for k := range x {
			keys = append(keys, k)
		}
		sort.Sort(sortableStrings{keys, rcfg.MapOrder})
		ma, err := na.BeginMap(len(x))
		if err != nil {
			return err
		}
		for _, k := range keys {
			va, err := ma.AssembleEntry(k)
			if err != nil {
				return err
			}
			if err := rcfg.ReflectIntoAssembler(va, x[k]); err != nil {
				return err
			}
		}
		return ma.Finish()
	case []string:
		la, err := na.BeginList(len(x))
		if err != nil {
			return err
		}
		for _, v := range x {
			if err := la.AssembleValue().AssignString(v); err != nil {
				return err
			}
		}
		return la.Finish()
	case []interface{}:
		la, err := na.BeginList(len(x))
		if err != nil {
			return err
		}
		for _, v := range x {
			if err := rcfg.ReflectIntoAssembler(la.AssembleValue(), v); err != nil {
				return err
			}
		}
		return la.Finish()
	case string:
		return na.AssignString(x)
163 164
	case []byte:
		return na.AssignBytes(x)
165 166 167 168 169 170 171 172 173 174
	case int:
		return na.AssignInt(x)
	case nil:
		return na.AssignNull()
	}
	// That didn't fly?  Reflection time.
	rv := reflect.ValueOf(i)
	switch rv.Kind() {
	case reflect.Bool:
		return na.AssignBool(rv.Bool())
175
	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
176
		return na.AssignInt(int(rv.Int()))
177 178
	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
		return na.AssignInt(int(rv.Uint()))
179 180 181 182 183
	case reflect.Float32, reflect.Float64:
		return na.AssignFloat(rv.Float())
	case reflect.String:
		return na.AssignString(rv.String())
	case reflect.Slice, reflect.Array:
184 185 186
		if rv.Type().Elem().Kind() == reflect.Uint8 { // byte slices are a special case
			return na.AssignBytes(rv.Bytes())
		}
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
		l := rv.Len()
		la, err := na.BeginList(l)
		if err != nil {
			return err
		}
		for i := 0; i < l; i++ {
			if err := rcfg.ReflectIntoAssembler(la.AssembleValue(), rv.Index(i).Interface()); err != nil {
				return err
			}
		}
		return la.Finish()
	case reflect.Map:
		// the keys slice for sorting keeps things in reflect.Value form, because unboxing is cheap,
		//  but re-boxing is not cheap, and the MapIndex method requires reflect.Value again later.
		keys := make([]reflect.Value, 0, rv.Len())
		itr := rv.MapRange()
		for itr.Next() {
			k := itr.Key()
			if k.Kind() != reflect.String {
				return fmt.Errorf("cannot convert a map with non-string keys (%T)", i)
			}
			keys = append(keys, k)
		}
		sort.Sort(sortableReflectStrings{keys, rcfg.MapOrder})
		ma, err := na.BeginMap(rv.Len())
		if err != nil {
			return err
		}
		for _, k := range keys {
			va, err := ma.AssembleEntry(k.String())
			if err != nil {
				return err
			}
			if err := rcfg.ReflectIntoAssembler(va, rv.MapIndex(k).Interface()); err != nil {
				return err
			}
		}
		return ma.Finish()
	case reflect.Struct:
		l := rv.NumField()
		ma, err := na.BeginMap(l)
		if err != nil {
			return err
		}
		for i := 0; i < l; i++ {
			fn := rv.Type().Field(i).Name
			fv := rv.Field(i)
			va, err := ma.AssembleEntry(fn)
			if err != nil {
				return err
			}
			if err := rcfg.ReflectIntoAssembler(va, fv.Interface()); err != nil {
				return err
			}
		}
		return ma.Finish()
	case reflect.Ptr:
		if rv.IsNil() {
			return na.AssignNull()
		}
		return rcfg.ReflectIntoAssembler(na, rv.Elem())
	case reflect.Interface:
		return rcfg.ReflectIntoAssembler(na, rv.Elem())
	}
	// Some kints of values -- like Uintptr, Complex64/128, Channels, etc -- are not supported by this function.
	return fmt.Errorf("fluent.Reflect: unsure how to handle type %T (kind: %v)", i, rv.Kind())
}

type sortableStrings struct {
	a    []string
	less func(x, y string) bool
}

func (a sortableStrings) Len() int           { return len(a.a) }
func (a sortableStrings) Swap(i, j int)      { a.a[i], a.a[j] = a.a[j], a.a[i] }
func (a sortableStrings) Less(i, j int) bool { return a.less(a.a[i], a.a[j]) }

type sortableReflectStrings struct {
	a    []reflect.Value
	less func(x, y string) bool
}

func (a sortableReflectStrings) Len() int           { return len(a.a) }
func (a sortableReflectStrings) Swap(i, j int)      { a.a[i], a.a[j] = a.a[j], a.a[i] }
func (a sortableReflectStrings) Less(i, j int) bool { return a.less(a.a[i].String(), a.a[j].String()) }